Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы высокого сопротивления родия

При ВЫСОКИХ температурах. При низких температурах газовая колба довольно велика (около 1 л), имеет прочные толстые стенки и помещена в вакуумную камеру. Термометры сопротивления из сплава родия с железом крепятся непосредственно к наружной стороне колбы. Регулирование температуры осуществляется нагревателем на радиационном экране датчиком температуры служит германиевый термометр сопротивления. Теплопроводность бескислородной меди с высокой проводимо-  [c.92]


Платина — родий. Как контакт- ный материал наиболее известен сплав с 10 % Нк. Он имеет высокие механические свойства (твердость и прочность на разрыв вдвое больше, чем у платины) и большое электрическое сопротивление, обладает малой летучестью при высокой температуре. Используется для свечей зажигания.  [c.301]

Вакансионные скопления (кластеры), которые несут ответственность за объемн ые изменения в металлах, обычно образуются в определенных кристаллографических плоскостях. Когда кристаллическая структура анизотропна или в процессе производства ей придана преимущественная ориентация, облучение может привести к преимущественному изменению одного из линейных размеров. Можно, например, предсказать, что трубы высокого давления в тяжеловодном реакторе будут удлиняться в процессе эксплуатации, а также могут значительно прогнуться из-за наличия поперечного градиента нейтронного потока. Так как это связано с низким пределом ползучести, радиационный рост такого рода довольно ограничен, что было отмечено для циркал-лоя-2. Трубы высокого давления, изготовленные из сплавов с более высоким сопротивлением ползучести, таких, как цирконий-ниобиевые сплавы, значительно увеличились в длину под облучением.  [c.96]

Для повышения твердости п механической прочности палладия, используемого в ювелирном деле, часто добавляют рутений и родий вместе в различных соотношениях. Меднопалладиевые сплавы хорошо поддаются обработке и являются довольно твердыми, хотя менее устойчивы против коррозии, чем сплавы с благородными металлами. Серебро образует с палладием пластичные сплавы, которые обладают хорошей стойкостью против коррозии онп находят применение при изготовлении ювелирных изделии, зубных протезов, электрических контактов и проволоки высокого сопротивления.  [c.498]

Процесс изготовления деталей путем диффузионного соединения методом ГИП разнородных составных частей также имеет хорошие перспективы. Ротор турбины, поперечное сечение которого показано в верхней части рис.20.4, состоит из литого кольца с рабочими лопатками из сплава с высоким сопротивлением ползучести, соединенного с диском из мелкозернистого высокопрочного сплава, изготовленного методами порошковой металлургии. Фотография в нижней части рис.20.4 показывает крупным планом место соединения этих двух сйлавов. Такой способ первоначально применялся лишь для изготовления роторов небольших газовых турбин, однако изучалась и возможность его использования для изготовления очень больших турбинных лопаток, в которых лопасти сделаны из одного сплава, а комель лопатки и кре-пеж-из другого. Таким образом, следует ожидать, что такого рода технология найдет широкое применение при изготовлении деталей из суперсплавов самых разных размеров.  [c.339]


Цинковые сплавы, содержащие алюминий, дешевы, имеют высокое сопротивление и высокую точку распада. У некоторых сплавов эгого рода замечаются с возрастом весьма заметные изменения в размерах. Применение очень чистых исходных материалов и известная прибавка (именно прибавка марганца) благолриатно влияют на устойчивость этих сп 1аво8. Сплавы цинка применяются для всевозможных частей аппаратуры, не подверженной высоким напряжениям и ударам.  [c.1018]

Если нецвсредственно после деформации металла или сплава в горячем евстоянии охлаждение производить очень быстро, то удается зафиксировать структуру пере-кристаллизованного или частично перекристаллизованного сплава, который имеет зерно с внутренней фрагментацией и полигонизацией, а также иное состояние границ зерен (зубчатое строение). Если сплав в этом состоянии подвергнуть только старению, исключив общепринятую высокотемпературную закалку на твердый раствор, то он будет обладать более высокими механическими свойствами при комнатной и повышенных температурах, но худшей жаропрочностью при высоких температурах. Такого рода комплекс операций называют высокотемпературной термомеханической обработкой. Сплав, имеющий структуру нерекристаллизованного аустенита, зафиксированного после горячей обработки давлением путем быстрого охлаждения, и подвергнутый старению, имеет лучшее сочетание прочности, пластичности, ударной вязкости и сопротивления усталости [35, 36].  [c.228]

Среди С. 2-го рода выделяют группу т. и. ж с с т к и х С. Для них характерно большое кол-во дефектов структуры (неоднородности состава, вакансии, дислокации и Др.), к-рые возникают благодаря спец, техиологии изготовления. В жёстких С. движение магн. потока сильно затруднено дефектами и кривые намагничивания обнаруживают сильный гистерезис. В этих материалах сильные сверхпроводящие токи (плотностью до 10 — 10 А/см ) могут протекать вплоть до полей, близких к верхнему критич. полю при любой ориентации тока и магн. поля. В идеальном С. 2-го рода, полностью лишённом дефектов (к этому состоянию можно приблизиться в результате длительного отжига сплава), при любой ориентации поля и тока, за исключением продольной, сколь угодно малый ток будет сопровождаться потерями на движение магн. потока уже при Н > Нс,- Такие С, 2-го рода наз. мягкими. Значение обычно во много раз меньше Нс,. Поэтому именно жёсткие С., у к-рых электрич. сопротивление практически равно нулю вплоть до очень сильных полей, представляют интерес с точки зрения техн, приложений. Их применяют для изготовления обмоток сверхпроводящих магнитов и др. целей. Существ, недостатком жёстких С. является их хрупкость, сильно затрудняющая изготовление из них проволок или лент. Особенно это относится к классич. соединениям с самыми высокими значениями Тс и Я,, типа Л зСа, КЬз8п, РЬМо За. Изготовление сверхпроводящих магн, систем из этих материалов — сложная технол. задача.  [c.441]

Определение остаточных напряжений первого рода проводили по методу Н. Н. Давиденкова. Кольца сглаживались пластиной = мм, г=15 мм) из твердого сплава Т15К6 при следующем режиме обработки 7=400 А у=6,5 м/мин 5 — = 0,2 мм/об Р=200 Н. В отдельных опытах изменялся только тот параметр, влияние которого определялось. Снятие наружных слоев металла осуществлялось электролитическим травлением. Автоматическая регистрация деформаций кольца в зависимости от толщины снятого поверхностного слоя осуществлялась при помощи измерительной установки на базе электронного потенциометра с ленточным самописцем, в котором термометр сопротивления был заменен проволочными тензодатчиками. Такая установка обладает высокой чувствительностью и позволяет регистрировать деформации с точностью до микрометра. Остаточные напряжения в поверхностном слое вычислялись по известным формулам.  [c.62]

Результат наложения ка переменные напряжения статических напряжений сжатия зависит от температуры и уровня предела выносливости при симметричном цикле. Эффективность сжимающей нагрузки, измеряемая отношением оаМ-ь как показали испытания сплава ХН77ТЮРУ при 250 С значительно выше, чем при 550° С. Отсюда следует, что применение поверхностного наклепа для деталей из сплава ХН77ТЮРУ, эксплуатируемых при 550° С, мен еэф-фективно, чем при т-емпературах до 250 С. Кроме того, длительное действие высокой температуры способствует релаксации и перераспределению остаточных напряжений в поверхностном слое детали. Статические напряжения сжатия компенсируют отрицательное влияние остаточных напряжений второго и третьего рода в высоколегированных сплавах, которое проявляется в понижении сопротивления усталости при нормальной температуре. На рис. 2.36 приведена кривая Wa-i =f( (T-i)> построенная по результатам испытания образцов гладких и с концентраторами напряжений из сплава ХН77ТЮРУ при базовом числе циклов Л б = 2-10 ... 2-10 .  [c.69]


Медь широко применяется в качестве конструкционного материала для изготовления различного рода сосудов, трубопроводов, химической аппаратуры, электрораспределительных устройств и другой аппаратуры. Медь обладает высокой тепло- и электропроводнофью, химической стойкостью и сохраняет свои механические свойства в условиях низких температур, когда почти все стали становятся хрупкими. Медь имеет температуру плавления 1083°С (1356 К), временное сопротивление в отожженном состоянии 200 МПа и плотность 8,9 г/см . Большое распространение в народном хозяйстве нашли сплавы меди — латунь и бронза. Латунь — это сплав меди с цинком. Ее применению способствует меньшая стоимость и плотность цинка по сравнению с медью. Температура плавления (800—900°С) зависит от состава — чем больше цинка, тем ниже точка плавления. Бронза представляет собой сплав меди с оло-вом, алюминием, бериллием и свинцом. Температура плавления 720—1000 °С. Чем больше в бронзе олова, тем ниже температура ее плавления.  [c.17]

Никелевые и медноникелевые сплавы по механическим, физикохимическим свойствам и областям применения можно условно разделить на следующие основные группы конструкционные, термоэлектродные, сплавы сопротивления и сплавы с особыми свойствами. К первой группе относятся монель-металл, мельхиор, никель технический, никель марганцевый и другие сплавы. Их применяют для изготовления деталей с повышенными механическими и коррозионными свойствами. Ко второй группе относятся хромель, алюмель, копель и сплавы для компенсационных проводов. Эти сплавы отличаются большой электродвижущей силой и высоким удельным электросопротивлением при малом температурном коэффициенте электросопротивления. Применяются они для из1Готовления прецизионных приборов, термопар и компенсационных проводов. Наконец, к третьей группе относятся главным образом нихромы, отличающиеся высокой жаропрочностью и жароупорностью и применяющиеся для изготовления разного рода электронагревательных приборов и электропечей. К этой группе сплавов нами условно отнесены сплавы типа манганин, константан, применяющиеся для реостатов и сопротивлений, а также жаропрочные и магнитные сплавы с особыми свойствами.  [c.282]

Сравнительные характеристики. К основным недостаткам керметов относят их низкую пластичность, малую вязкость и большую чувствительность ко всякого рода надрезам, дефектам и ударам. Однако при высокой температуре керметы ведут себя лучше, чем металлические сплавы, так как обладают более устойчивой структурой. Это свойство так же, как и малая плотность и хорошее сопротивление окислению, позволяет использовать детали из керметов при болыиих нагрузках и сильном нагреве. Так, например, на рис. 13.2 показаны кривые предела длительной прочности сплавов на основе разных мета. глов и кермета. 11з графика следует, что большая жаропрочность керметов достигается при относительно малой плотности (5,7 г/см ), тогда как плотность никелевого сплава — 8 г/см .  [c.218]

Сопротивление борированной стали износу схватыванием 1-го рода исследовали на волоках, работающих в реальных производственных условиях. Волоки в основном изготовляют из вольфрамовых твердых металлокерамических сплавов типа ВКЗ, ВК8, ВКЮ и др., твердостью ИЯС 87—89. Средняя стойкость таких волок составляет 20—25 т металла (калибрование прутка из стали 50 от диаметра 23 до 22 мм) [57]. Основными недостатками волок из твердого сплава являются высокая стоимость материала, сложность и большая трудоемкость обработки и доводки канала волоки до заданных размеров и необходимой геометрической формы, а также разрушение волок в процессе протягивания вследствие большой хрупкости. Особенно большие трудности возникают при обработке и доводке волок для изготовления фасонных профилей. В связи с этим в ряде случаев волоки изготовляют из графитизированной стали и инструментальных сталей У8, У12, ШХ15, Х12М, ХВГ и др. [80].  [c.31]


Смотреть страницы где упоминается термин Сплавы высокого сопротивления родия : [c.498]    [c.303]    [c.41]    [c.76]    [c.502]    [c.259]    [c.418]    [c.502]   
Электро-технические материалы Издание 2 (1969) -- [ c.414 ]



ПОИСК



I рода

I рода II рода

Родан

Родиан

Родий

Родит

Сплавы высокого сопротивлени

Сплавы сопротивления



© 2025 Mash-xxl.info Реклама на сайте