Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность геометрического фактор

Геометрический фактор оказывает более существенное влияние на пластичность металлов (см, гл. XIV).  [c.480]

Предел пластичности Лр является сложной функцией многих факторов и зависит от химического состава и структуры металла (сплава) температурно-скоростных условий деформирования напряженного состояния предшествующей разрушению истории развития напряжений и деформаций во времени геометрического фактора и внешней среды.  [c.487]


ВЛИЯНИЕ ВНЕШНЕЙ СРЕДЫ И ГЕОМЕТРИЧЕСКОГО ФАКТОРА НА ПЛАСТИЧНОСТЬ МЕТАЛЛОВ И СПЛАВОВ  [c.525]

Влияние геометрического фактора. Как и сопротивление деформации, пластичность зависит от геометрического фактора, роль которого проявляется в двух аспектах, учитывающих отношение поверхности к объему (поверхностный фактор по терминологии С. И. Губкина) и изменение структуры (структурный фактор) в зависимости от размера образца.  [c.528]

Наростообразование зависит от физико-механических свойств обрабатываемого металла, скорости резания, геометрических параметров режущего инструмента и других факторов. Наиболее интенсивно нарост образуется при обработке пластичных металлов. Считают, что наибольшее наростообразование при обработке пластичных металлов происходит при скоростях резания 0,3. .. 0,5 м/с, а при скоростях резания до 0,2 м/с и свыше 1 м/с нарост на режущем инструменте не образуется.  [c.308]

Эффективный коэффициент может существенно отличаться от теоретического а , определяемого по соотношениям теории упругости. Если теоретический коэффициент зависит только от геометрических параметров детали, концентратора, нагрузок и напряженного состояния, то эффективный коэффициент зависит от долговечности. Отличие от определяется влиянием пластичности, неравномерности напряжений, масштабным фактором и чувствительностью материала к концентрации напряжений. Часто величина п (или te) не известна заранее. В этом случае может быть рекомендовано несколько упрощенных процедур [130], позволяющих получить приближенное решение. Если имеются данные испытаний образцов из материала, из которого изготовлен диск с концентрацией напряжений при том же виде нагрузки и равенстве теоретических коэффициентов концентрации образца и диска, долговечность можно определить с помощью приближенной процедуры (рис. 4.24). На рис. 4.24, б построена линейная зависимость амплитуды от среднего напряжения [аналогично(4.43)] на рис. 4.24, а приведена зависимость — Nf для образца с концентрацией напряжений при симметричном цикле (кривая / точка А соответствует значению долговечности). Коэффициент концентрации учитывают при амплитуде напряжений, а среднее напряжение принимают по номинальному значению. При использовании результатов следует иметь в виду влияние масштабного фактора при несовпадении размеров концентратора образца и диска. Очевидным преимуществом является учет чувствительности к концентрации напряжений. Если а известен из опыта испытаний аналогичных конструкций, то следует пользоваться кривой 2 для гладких образцов (точка В соответствует значению =  [c.142]


Размеры деформируемой заготовки в некоторых случаях суш,ественно влияют на пластичность, сопротивление деформации, качество получаемого полуфабриката при соблюдении геометрического подобия. Рассматривая влияние масштабного фактора (при соблюдении геометрического подобия) применительно к технологии выдавливания, необходимо отметить, что с увеличением диаметра сечения исходной заготовки неравномерность распределения по сечению и число различных видов повреждений структуры увеличиваются, качество поверхности и поверхностного слоя в целом (число и глубина дефектов в виде накладов, волосовин, плен и т. п.) ухудшается. Пластичность металла уменьшается, а возможность появления дефектов на готовой детали (скрытых и визуально просматриваемых) — увеличивается.  [c.104]

Однако, несмотря на приближенный характер расчетной схемы, в работах данного направления получен ряд практически важных выводов и рекомендаций. Применение численных методов, таких как МКЭ [54, 145, 236], вариационно-разностный [74], метод функций комплексной переменной [33, 207], позволило рассматривать замковые соединения в рамках двумерной задачи теории упругости и пластичности, достаточно полно учесть геометрические и силовые факторы, решить задачи контактного взаимодействия упругопластических тел.  [c.183]

Приведем последнее замечание, иллюстрирующее сложность явления разрушения. Если испытать на растяжение или изгиб цилиндрические образцы из одного и того же хрупкого материала (например, из фарфора), но различных размеров, то, как установлено экспериментаторами, прочность на разрыв оказывается тем меньшей, чем больше размеры образца. Аналогичные наблюдения были проведены при сравнении прочности на разрыв геометрически подобных цилиндрических стержней различных размеров, полученных путем механической обработки из одной и той же выплавки мягкой стали ). Вопрос о том, влияют ли размеры геометрически подобных образцов на их прочность при растяжении или изгибе для материалов, деформирующихся до разрушения лишь упруго, является пока открытым ввиду крайней трудности получения однородных образцов разных размеров (например, из таких материалов, как плавленый фарфор). С той же трудностью приходится сталкиваться и в отношении образцов, вырезанных из мягкой стали илп другого пластичного металла, предварительно подвергнутого холодной или горячей обработке—прокатке или ковке. Постулируя возможность существования масштабного фактора , влияющего на величину временного сопротивления хрупких материалов (как плавленый фарфор), В. Вейбулл ) развил статистическую теорию прочности материалов, которая объясняет понижение прочности крупных образцов по сравнению с мелкими тем, что для крупных образцов существует относительно большая вероятность образования различных трещин и дефектов. К тому же типу явлений следует отнести также и предполагаемое влияние пространственного градиента напряжений на прочность образцов, подвергнутых чистому изгибу или кручению.  [c.216]

Величина остаточных напряжений и деформаций зависит от пластичности свариваемого металла, от величины зоны нагрева, геометрических размеров и формы свариваемых деталей, а также структурных изменений наплавленного и основного металла и других факторов.  [c.165]

Известно, что эксплуатационные свойства детали зависят не только от ее геометрических разме ров и их соотношений, но и от механических характеристик материала (предела пропорциональности, временного сопротивления, ресурса пластичности и др.), которые в свою очередь находятся в значительной зависимости от размеров зерен. При пластической деформации происходит измельчение последних. Если формоизменение осуществляют с нагревом, то одновременно наблюдается и объединение раздробленных зерен — так называемая рекристаллизация (см. 1.2). При некоторых условиях рекристаллизация может проходить весьма активно, что приводит к значительному росту размеров зерен и, как следствие, ухудшению механических характеристик материала. Поэтому размеры зерна также являются фактором, определяющим возможности операции.  [c.14]


Расчеты критических размеров трещин требуют особой точности и обоснованности. Это связано с тем, что в отличие от традиционных расчетов прочности конструкции, при которых средние по сечению напряжения существенно ниже предела текучести (т. е. конструкция не переходит даже в стадию пластичности), расчет трещины является расчетом стадии разрушения. Кроме того, на критические размеры трещины существенно влияет большое число факторов температура, вид напряженного состояния в вершине трещины, который в свою очередь определяется целым рядом параметров, в том числе геометрическими размерами трещины и конструкции, маркой стали и технологией изготовления и т. п.  [c.25]

Вид разрушения материалов (отрыв или срез), а следовательно, и решение вопроса о выборе той или иной теории прочности зависит от ряда факторов, к которым относятся скорость деформирования температура испытания характеристики пластичности материала при одноосном растяжении геометрические размеры детали жесткость напряженного состояния, обычно характеризуемая отношением Ур максимального нормального напряжения к интенсивности напряжений <г.,  [c.83]

Хрупкость ИЛИ пластичность многих образцов, например свободных пленок, затрудняет использование одного этого измерения в достаточном широком температурном диапазоне, т. к. растяжение пленки под грузом может влиять на результаты. Существуют два решения этой проблемы или маятник переворачивается и вес гирь уравновешивается, чтобы минимизировать силу растяжения, приложенную к образцу (показано схематически на рйс, 1 4), шш. лшф ь1ТИ-е нанос.ится на металлическую фольгу (или стеклоткань), которая образует подвеску простого маятникового устройства и выдерживает вес гири. Если использована металлическая фольга, то для определения модуля покрытия необходимо предварительно определить его для фольги. Однако для точного определения модулей серьезной проблемой является геометрический фактор, поскольку уравнение для модуля содержит разность кубов толщины покрытия с фольгой и собственно фольги [33]. Поскольку толщину часто бывает трудно определить достаточно точно и она может изменяться с температурой (в результате отверждения, потери растворителя и т. п.), это может привести к серьезным ошибкам. Менее очевидный недостаток заключается в том, что рабочая частота также изменяется с температурой (из-за изменений эластичности покрытий, которые могут быть значительными даже в армированных пленках). Эти трудности могут быть преодолены, если использовать методы, рассмотренные ниже.  [c.406]

При решении многих задач прочности материалов и конструкций возникает необходимость учета многочисленных факторов, влияющих на показатели несущей способности конструкций. К таким факторам относятся концентрация напряжений вблизи отверстий, выточек и других концентраторов в деталях весьма сложной геометрической формы и нагружаемых по сложной схеме нагружения неравномер ность свойств материалов по объему неупругость и пластичность материалов влияние неравномерного неустановившегося нагрева на свойства материалов, эро знойное и коррозионное влияние среды и т. д. Современный мощный аппарат вы числительной техники не всегда в состоянии обеспечить исследователей необходи мой информацией, поскольку во всех расчетах используются усредненные данные  [c.3]

Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]

Вытяжку с утонением применяют при изготовлении цилиндрических деталей глубиной до 10 диаметров (гильзы, тоикостениые трубы, баллоны и т. п.) из латуин, низкоуглеродистой стали, алюминия и других материалов, обладающих достаточной пластичностью в холодном состоянии. Этот способ позволяет получить детали, имеющие относительно точные размеры и высокие прочностные свойства, в два-три раза превышающие прочность исходного материала. Последнее обеспечивается упрочнением металла при деформировании в сочетании с соответствующей термической обработкой. Возможности формоизменения за одну операцию ограничены разрушением стенки по выходе из матрицы, требуемой точностью полуфабрикатов, работоспособностью смазочного покрытия, тепловыделением в очаге деформации и другими факторами. Какой из перечисленных факторов является лимитирующим, зависит от требований, предъявляемых к изделию, состояния и пластических свойств материала. интенсивности упрочнения, наличия дефектов, а также от геометрических параметров инструмента, условий охлаждения н применяемого смазочного материала.  [c.156]

На размеры нароста оказывают влияние многие факторы физико-механические свойства обрабатываелюго металла, режимы резания, геометрические параметры инструмента, наличие и состав смазочно-охлаждающей жидкости. С увеладением пластичности обрабатываемого металла размеры на- Рис. зо. Нарост на резце роста возрастают. Наоборот, при обработке  [c.39]


Иногда, если ребра, подкрепляющие О., достаточно надежны, сознательно допускают работе О. при нагрузках, превышающих критическую. Панели, потерявшие устойчивость, продолжают работать пак силовой элемент конструкции однако при этом су]че-ственно повышается ответственность набора, к-])ый должен быть рассчитан с учетом особенностей поведения О. в закритич. стадии. Расчет деформации О. в этой стадии, так же как и хлопок, принадлежат к числу геометрически нелинейных задач теории О. (т. е. таких задач, нелинейность которых обусловливается геометрич. фактором — сравнимостью перемещений О. с толщиной) с иным типом нелинейности (физической) приходится сталкиваться при расчете О., работающих при напряжениях выше предела пропорциональности или предела текучести. В этом слз чае нелинейность обусловливается свойствами материала О. Соответствующие уравнения выводятся с использованием теории пластичности [71 (при тех же основных допущениях, какие были указаны выше).  [c.466]


Смотреть страницы где упоминается термин Пластичность геометрического фактор : [c.336]    [c.156]    [c.296]    [c.99]    [c.22]    [c.26]   
Физические основы пластической деформации (1982) -- [ c.528 ]



ПОИСК



Влияние внешней среды и геометрического фактора на пластичность металлов и сплавов

Геометрический фактор



© 2025 Mash-xxl.info Реклама на сайте