Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип относительности в механике жидкости

В соответствии с принципом относительности в механике безразлично, находится ли жидкость в покое, а тело равномерно движется или, наоборот, тело находится в покое, а жидкость набегает на него с равной по величине, но противоположной по направлению скоростью.  [c.91]

К этому же периоду относятся работы Галилео Галилея (1564—1642). Он сформулировал принцип относительности классической механики и принцип инерции (хотя и не в общем виде), установил законы свободного падения тел. Галилеем была построена количественная теория движения тяжелого тела по наклонной плоскости и теория движения тела, брошенного под углом к горизонту. Кроме того, Галилей занимался изучением прочности стержней и сопротивлением жидкости движущимся в ней телам. Последователем Галилея в области механики был Христиан Гюйгенс (1629—1695), который сформулировал понятия центростремительной и центробежной сил, исследовал колебания физического маятника, заложил основы теории удара.  [c.10]


Остановимся конкретно на поступательном прямолинейном и равномерном движении сечения тела в идеальной жидкости. Будем рассматривать движение жидкости, окружающей сечение, по отношению к системе координат, жестко связанной с этим сечением. Тогда на основании галилеева принципа относительности классической механики можно задачу о поступательном прямолинейном и равномерном движении тела в жидкости, покоящейся в бесконечности,  [c.90]

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соответствующих обобщениях находит приложение в оптике, статистич. физике, квант. М., электродинамике, теории относительности и др. (см., напр.. Действие, Канонические уравнения механики, Лагранжа функция, Лагранжа уравнения в общей механике, Наименьшего действия принцип). Кроме того, прп решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики разреженных газов, магнитной гидродинамики и др. одновременно используются методы и ур-ния как теор. М., так и термодинамики, мол. физики, теории электричества и др. Важное. значение М. имеет для мн. разделов астрономии, особенно для небесной механики.  [c.414]

Для более сложных материалов, которые обладают некоторой степенью упругости, внутренняя энергия может обратимо запасаться вследствие деформации, и энергетическое уравнение состояния необходимо содержит кинематические независимые переменные. Очень немного известно о форме энергетического уравнения состояния для реальных упругих жидкостей, т. е. о приемлемых определяющих предположениях относительно внутренней энергии. Это положение ставит ряд проблем, которые будут подробно обсуждены в последних главах. Вообще говоря, можно установить, что механика неньютоновских жидкостей занимается преимущественно рассмотрением импульса, и в настоящее время принцип сохранения энергии может дать лишь незначительную информацию.  [c.15]

Если это движение рассматривать в системе координат, жестко связанной со стенками канала, то при постоянной во времени относительной скорости движение будет установившимся. Полагая жидкость идеальной, его можно описать уравнениями Эйлера, однако в отличие от абсолютного движения, в соответствии с известным принципом механики, необходимо в число массовых сил ввести силы инерции.  [c.105]


Случаи, когда жидкость покоится относительно стенок резервуаров, движущихся с ускорением относительно Земли, называют обычно относительным покоем. Выбирая систему координат, жестко связанную со стенками резервуара, мы приходим к статической задаче, основой для решения которой служат уравнения Эйлера (4-1). В соответствии с известным принципом механики при пользовании уравнениями равновесия в системе координат, которая движется с ускорением, мы должны в число действующих массовых сил включить также силы инерции. Имея это в виду, рассмотрим два случая относительного равновесия.  [c.74]

При отсутствии касательных сил трения, два параллельно движущихся слоя идеальной жидкости могли бы иметь совершенно произвольные скорости, свободно скользить друг относительно друга. Этот факт находится в явном противоречии с принципом непрерывности поля скоростей, положенным ранее в основу кинематики и динамики жидкости и газа. Можно было бы ожидать при этом, что схема идеальной жидкости должна привести к результатам, далеким от реальности, бесполезным для практики. Однако это не так. Теория идеальной жидкости в большинстве случаев с достаточной для практики точностью описывает обтекание тел, оценивает распределение давлений по поверхности обтекаемых тел, дает суммарную силу давления потока на тело и мн. др. Причиной достаточного совпадения с опытом столь, па первый взгляд, отвлеченной, идеализированной схемы служит дополнительное допущение о сохранении и для идеальной жидкости принципа непрерывности распределения механических и термодинамических величин в движущейся среде. В этом фундаментальном принципе механики сплошной среды заложена главная качественная сторона физического механизма молекулярного обмена в жидкостях и газах, приводящего, с одной стороны, к непрерывности полей физических величин и, с другой, к наличию трения и теплопроводности.  [c.124]

Из различных типов наперед заданного движения твердого те. З в последующем будет играть особую роль случай поступательного прямолинейного и равномерного движения тела в жидкости. Создаваемое им состояние движения жидкости будет, очевидно, установившимся, если рассматривать движение жидкости по отношению к осям, связанным с телом. Для расчета поля гидродинамических давлений мы можем на основании галилеевского принципа относительности классической механики принять в качестве основных неподвижных осей упомянутые выше оси, связанные с телом. Иначе говоря, мы можем задачу о поступательном прямолинейном и равномерном движен1 и тела в жидкости, которая покоится в бесконечности, свести к задаче об установившемся обтекании неподвижного тела безграничным потоком жидкости, бесконечно удаленные частицы которой имеют повсюду одинаковую по величине и направлению скорость.  [c.238]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]


Следует отметить, что инерционные силы в жидкости, приводимой в движение растущим пузырем, оказываются существенными для условий отрыва парового пузырька даже при относительно небольших числах Якоба (Ja = 3—30). Благодаря их влиянию можно объяснить, в частности, почему паровой пузырек отрывается от поверхности нагрева в условиях микрогравитации, когда актуальное ускорение массовых сил составляет (10"" —10 ) g (практически в невесомости) или в земных условиях в направлении, противоположном силе тяжести, вниз от поверхности цилиндрического нагревания. Для такого объяснения используем модель сферического пузырька. С учетом сказанного в п. 6.5.1 априорное задание формы газовой полости делает анализ приближенным. Однако постулирование не изменяемой во времени формы пузыря позволяет использовать достаточно простые методы механики твердого тела, в частности понятие силы, приложенной к центру масс. Степень приближенности такого подхода зависит от того, насколько принимаемая в модели форма близка к наблюдаемой в опытах. Это отступление от требований строгого анализа никоим образом не распространяется на принцип Даламбера баланс сил, приложенных к пузырьку заданной формы, остается справедливым в любой момент времени и не может использоваться как условие отрыва.  [c.279]


Смотреть страницы где упоминается термин Принцип относительности в механике жидкости : [c.245]    [c.105]    [c.105]    [c.46]    [c.24]    [c.417]   
Динамическая оптимизация обтекания (2002) -- [ c.31 ]



ПОИСК



Жидкости Относительный вес

Механика жидкости

Принцип относительности

Принципы механики



© 2025 Mash-xxl.info Реклама на сайте