Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан хромоникелевых сталях

Из данных табл. 66 видно повышение стойкости сталей к точечной коррозии с увеличением содержания в них хрома. Из данных таблицы также следует, что углерод, титан и ниобий снижают стойкость хромоникелевой стали к точечной коррозии, равно как и введение марганца при одновременном снижении содержания хрома и никеля, в то время как Мо значительно повышает стой-  [c.418]

Разновидностью межкристаллитной коррозии металлов является ножевая коррозия (рис. 3. 2з) — коррозия местного вида, возникающая в сварных конструкциях в очень узкой зоне на границе сварной шов — основной металл при сварке хромоникелевых сталей с повышенным содержанием углерода, даже легированных титаном или ниобием. В узкой околошовной зоне перегретого почти до расплавления металла (порядка 1300° С и выше) растворяются карбиды титана или хрома. При последующем быстром охлаждении (при контакте с ненагретым металлом) этой зоны карбиды титана или ниобия не успевают выделиться вновь и углерод остается в твердом растворе. Последующее достаточно длительное пребывание этой зоны при температурах 600—750° С, например, при сварке двухсторонним швом, приводит  [c.424]


Хромомарганцовистая сталь. Многолетний опыт заводов показал, что очень часто без ущерба для прочности можно пользоваться сталями с умеренным количеством дорогих и дефицитных легирующих элементов. В качестве заменителя хромоникелевой стали, особенно с высоким содержанием никеля, применяется хромомарганцовистая сталь. Для получения мелкого зерна эти стали часто легируются титаном. Широкое распространение получили стали ЗОХГТ, ЗОХГС, ЗОХГСА, которые характеризуются хорошими технологическими свойствами.  [c.84]

Титан. Титан связывает углерод в прочные карбиды. Этим самым он снижает концентрацию свободного углерода в твердом растворе и препятствует образованию карбидов хрома, выделение которых при нагревании хромоникелевых сталей в зоне опасных температур. — наиболее частая причина появления МКК.  [c.53]

Существенным недостатком при защите от МКК с помощью легирования титаном является увеличение растворимости карбида титана с ростом температуры закалки, что приводит к повышению содержания свободного углерода и титана в твердом растворе. В этом случае при последующем отпуске в зоне опасных температур вследствие более быстрой доставки к границам зерен углерода образуются карбиды хрома, а не карбиды титана) что приводит к появлению склонности к МКК даже при некотором избытке титана в стали. Чем выше температура закалки, тем большее количество карбидов титана диссоциирует и тем выше содержание несвязанного углерода в твердом растворе, тем больше вероятность появления склонности к МКК- Таким образом, если материал подвергается высокой закалке или технологическим нагревам до высоких температур, например при сварке, легирование титаном не всегда может гарантировать полную устойчивость аустенитных хромоникелевых сталей к МКК.  [c.54]

Тантал. Тантал на восприимчивость хромоникелевых коррозионно-стойких сталей влияет аналогично титану и ниобию. Однако поскольку его атомная масса вдвое больше, чем у ниобия, то и вводить его в стали требуется в больших количествах. Для стабилизации хромоникелевых сталей количество тантала определяется по соотношению Та/С = 15-ь20.  [c.55]

Титан, ниобий, вольфрам. Обычно ухудшают стойкость аустенитных хромоникелевых сталей к КР. Являясь ферритообразующими элементами, они снижают стабильность аустенита, тем самым облегчая возможность для КР-  [c.73]

В работе [1] приведены результаты исследований ряда аусте-нитных хромоникелевых сталей, легированных титаном, ниобием, алюминием, кремнием и молибденом в количестве 1,2—1,5 %. Химический состав сталей и средние значения скорости переноса масс представлены в табл. 17.1 и 17.2. Испытания по определению переноса масс проводили в течение 1000 ч в потоке жидкого натрия при 900 °С на входе в испытательный участок, 860 °С на выходе и массовом содержании кислорода (1—3)-10 %.  [c.262]


Хромоникелевые стали типа 18-8 с присадками Ti и Nb. Титан вводят в хромоникелевую сталь в количестве, в 5—7 раз большем, а ниобий — в 8—10 раз большем содержания углерода.  [c.146]

При температуре воды 268 С, скорости ее движения 9 м сек и в присутствии 50 мл л водорода коррозия хромоникелевой стали, дополнительно легированной титаном или ниобием, незначительна и ею можно пренебречь. При повышении температуры воды до 317° С, в присутствии 100 мл л водорода и при скорости ее движения 6 лг/се/с скорость коррозии этой стали увеличивается примерно в пять раз, а в продуктах коррозии ее содержится 90% железа, 1% хрома и 5% никеля. Состояние поверхности стали на скорость коррозии не влияет. В сварных конструкциях из стали 18-9, легированной титаном, возможно появление усиленной местной коррозии в переходной зоне (между основным металлом и сварным швом). Склонность к коррозии в этом случае не зависит от закалки шва, сильно уменьшается при температуре отпуска сваренной конструкции 650° С, длившегося в течение 2 час, резко увеличивается при закалке перед отпуском и уменьшается при стабилизирующем отжиге сварного шва. Наилучшие результаты получаются при закалке этой стали перед сваркой и отжиге после сварки при температуре 800° С в течение 4 час (испытания проводились в азотной кислоте). Холоднодеформированные образцы из стали 18-9 усиленной коррозии подвергаются в серной кислоте. Стойкость их становится высокой после стабилизирующего отжига при температуре 850° С в течение 2 — 3 час.  [c.299]

При рабочих температурах 700—750° С жаропрочные сплавы на никелевой основе, легированные титаном, алюминием, ниобием и другими элементами, по сопротивлению термической усталости обычно превосходят аустенитные хромоникелевые стали. Однако, с одной стороны, при больших упругопластических деформациях за цикл хромоникелевые аустенитные стали нередко превосходят по сопротивлению термической усталости малопластичные высокожаропрочные сплавы не только в рассматриваемом диапазоне температур, но и при более высоких температурах (до 900° С). С другой стороны, при длительном действии термических напряжений временная зависимость сопротивления термической усталости в интервале температур 700—750° С более резко выражена у высокопрочных сплавов [2j.  [c.144]

Непосредственно с краем шва (один из очагов разрушения) металл имеет явно выраженные цвета побежалости, что хорошо видно под микроскопом (МБС-10) при увеличении в 10... 30 раз. Это позволяет предположить, что вблизи сварного шва существует зона провоцирующего нагрева, которая может быть причиной нарушения межкристаллитных связей в стали и привести к межкристаллитной коррозии (МКК), особенно у аустенитных хромоникелевых сталей не стабилизированных титаном или ниобием. По литературным данным [70, 81 и др.] для проявления склонности к МКК для сталей типа 18-10 (18-9)  [c.91]

В настоящее время надежными средствами измельчения структуры сварных швов хромоникелевых сталей в производственных условиях легирование их ферритообразующими примесями — титаном, ванадием, молибденом и др., применение основных флюсов (покрытий) и наклеп (чеканка) швов. Обязательным условием измельчения строения сварного шва в настоящее время является создание двухфазной структуры. Задача значительного измельчения структуры однофазного аустенитного шва, обеспечивающего высокую стойкость против горячих трещин, все еще не разрешена.  [c.114]

Алюминий и титан играют двоякую роль с одной стороны, они связывают углерод и азот в карбиды и нитриды, уводя этим самым из твердого раствора сильные аустенитообразующие элементы. Это, сообщает хромоникелевой стали 17-7 способность к превращению С другой стороны, избыток алюминия и титана, не связанных в карбиды и нитриды, способствует образованию интерметаллидных фаз при умеренных температурах и дополнительному упрочнению за счет дисперсионного твердения. Предполагается, что дисперсионное твердение развивается преимущественно в ферритной фазе, имеющей меньшую растворимость фаз по сравнению с аустенитной. Поэтому наибольшее упрочнение достигается в том случае, когда сталь имеет достаточное количество мартенсита.  [c.246]


Хромоникелевая сталь 18-8 с очень низким содержанием углерода (0,03—0,04%) освоена в СССР [827], она рекомендуется для изготовления коррозионностойкой аппаратуры и особенно в качестве электродной проволоки для сварки хромоникелевых сталей типа 18-8 и 18-8 с титаном или ниобием.  [c.291]

Механические свойства хромоникелевой стали типа i8-8 с титаном при комнатной температуре  [c.331]

Механические свойства хромоникелевой стали типа 18-8 с титаном при высоких температурах  [c.332]

На рис. 178 приведены кривые изменения механических характеристик хромоникелевой стали типа 18-8 с титаном в зависимости от температуры испытания.  [c.334]

В обозначении марки стали первые две цифры указывают среднее содержание углерода в сотых долях процента, а буквы — основную легирующую присадку. Если эта присадка превышает 1,5%, то после буквы ставят цифру, указывающую примерное содержание этого элемента в це.,1ых единицах, например Сталь 12ХН2 — хромоникелевая сталь, содержащая углерода — около 0,12%, хрома — около 1% и никеля—около 2%. Буквы за цифрами означают В — вольфрам Г — марганец М — молибден Н — никель Р — бор С — кремний Т — титан Ф — ванадий X — хром Ю — алюминий и т. д.  [c.268]

Удовлетворяющую этому требованию Хромоникелевую сталь марки Х18Н9Т применяют для сварных конструкций. Легирование стали ниобием (сталь 0Х17Н12Б) в ряде случаев дает больший эффект, чем легирование титаном. Кроме того, ниобий меньше, чем титан, подвержен выгоранию, поэтому в качестве присадочного материала при сварке применяют электродную проволоку из стали, легированной ниобием.  [c.424]

Методом борьбы с ножевой коррозией сварных соединении хромоникелевых сталей является легирование их титаном и ниобием в количествах, превышающих известные соотноиычшя. А. И. Акулов рекомендует следующие соотношения  [c.168]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие хромоникелевые стали аустенитного класса, легированные молибденом, например сталь марки Х18Н12МЗТ, а также титан и хром обладают высокой стойкостью к щелевой коррозии. Благодаря высокой стойкости хрома можно рекомендовать хромовые покрытия для защиты от щелевой коррозии.  [c.207]

К материалам, которые могут быть сварены на указанных установках, относятся сталь Х18Н10Т и другие марки хромоникелевых сталей нейзильбер, титан, никель, монель-металл, нихром, берил-лиевая бронза, латуни некоторых марок и др. Наилучшие результаты получаются при сварке одноименных материалов.  [c.154]

Аустенитпые хромоникелевые стали подвержены межкристаллитной коррозии, поэтому желательно применение стабилизированных сталей, содержащих какой-либо элемент (ниобий, титан), предупреждающий межкристаллитную коррозию. Можно применять и нестабилизированные стали, но при этом содержание углерода в стали должно быть не более 0,03% для листов толщиной более 30 мм и 0,05% — для листов толщиной более 20 мм. Полный отжиг изделия в этом случае можно не производить (особенно для крупногабаритных конструкций), достаточно лишь осуществить высокий отпуск.  [c.286]

Сопоставляя результаты испытаний эрозионной стойкости различных металлов, проведенных разными способами, можно констатировать следующее. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые стали. Причем аустенитные хромоникелевые стали имеют значительно более высокую эрозионную стойкость, чем перлитные. Низкую эрозионную стойкость имеют чугуны, углеродистые стали, никель и чистый титан. Наиболее низкая эрозионная стойкость зафиксировала у алюминия. В пределах определенных групп материалов (углеродистые стали, хромоникельные аустенитные стали и т. п.) эрозионная стойкость тем выше, чем больше твердость металла.  [c.46]

Хромоникелевые стали, стабилизированные титаном и содержащие молибден, приме[1яются в специфических средах (кипящей серЕгистой, фосфорной, муравьиной и уксусной кислотах, сульфитном щелоке, горячем растворе белильной извести и т. п.).  [c.24]

Наиболее легко ликвационный квадрат выявляется в сталях 1—4X13, в хромоникелевых сталях с титаном и ниобием для выявления ликвационного квадрата нужно длительное травление.  [c.269]

Хромоникелевые стали типа 18-8 без дополнительного легирования другими примесями, наряду с ценными свойствами, характерными для аустенитных сталей, обладают существенным недостатком — склонностью к межкристаллитной коррозии (после воздействия так называемых критических или опасных температур), возникающей в результате выпадения сложных карбидов железа и хрома по границам кристаллов аустенита и обеднения пограничных слоев аустенита хромом. Закалка, как уже указывалось, фиксирует аустенитное строение и этим самым предотвращает опасность межкристаллитной коррозии. С помощью закалки представляется возможным получить листовую катаную сталь типа 18-8, которая в состоянии поставки обладает стойкостью против межкристаллитной коррозии. При сварке такой стали определенные участки основного металла, расположенные по обе стороны от шва, подвергаются более или менее длительному нагреву в температурной области, ограниченной линиями GK и GE. Здесь foжeт развиться межкристаллитная коррозия. Чтобы этого не произошло, необходимо принять специальные меры — либо снизить содержание углерода в стали до предела растворимости в аустените при комнатной температуре, либо предотвратить обеднение аустенита хромом путем легирования стали элементами, обладающими большим сродством к углероду, чем хром. С этой, целью стали типа 18-8 легируют дополнительно титаном или ниобием с танталом. Оба эти элемента повышают прочность и жаропрочность стали.  [c.35]


Жаропрочные характеристики могут увеличиваться или уменьшаться в зависимости от условий образования 0-фазы и температуры испытания. При небольшом сроке службы присутствие а-фазы в хромоникелевых сталях типа 18-8 с присадками может быть полезным, так как несколько повышает жаропрочность при невысоких температурах испытания. При длительных испытаниях, особенно при повышенных температурах вследствие коагуляции а-фазы, присутствие ее нежелательно, так как сопротивление ползучести и длительная прочность уменьшаются. Ударная вязкость при высоких температурах в присутствии а-фазы не так сильно изменяется. Присутствие о-фазы уменьшает коррозионную стойкость хромоникелевых сталей типа 18-8 с титаном в кипящей 65%-ной HNO3.  [c.239]


Смотреть страницы где упоминается термин Титан хромоникелевых сталях : [c.276]    [c.486]    [c.201]    [c.17]    [c.118]    [c.55]    [c.30]    [c.168]    [c.87]    [c.156]    [c.22]    [c.253]    [c.161]    [c.172]    [c.222]    [c.285]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.122 ]



ПОИСК



Влияние титана на структуру и свойства хромоникелевых сталей

Окалиностойкость хромоникелевых сталей типа 18-8 с ниобием и титаном

Состав и свойства хромоникелевых сталей типа 18-8 с титаном или нобием

Сталь хромоникелевая

Титан

Титанит

Титания

Хромоникелевая сталь типа 25-25 с титаном (ЭИ

Хромоникелевые



© 2025 Mash-xxl.info Реклама на сайте