Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучатель Характеристики

Если бы микрофон перемещался относительно источника звука не по прямой, а по окружности радиуса JA, то, нанеся результаты измерений на график и откладывая по каждому направлению из центра графика показания прибора, т. е. величины, пропорциональные звуковому давлению в точке нахождения микрофона, мы получили бы сведения о распределении в пространстве звуковой энергии от источника звука (график в так называемых полярных координатах). Такой график распределения энергии в пространстве вокруг излучателя называется характеристикой направленности излучателя ). Характеристика направленности дает, таким образом, представление о степени концентрации звуковой энергии в заданном направлении.  [c.124]


Ультракороткие волны (УКВ) представляют чрезвычайный интерес для решения многих важнейших технических задач. Это связано с тем, что для передачи энергии и получения направленного излучения выгодно увеличивать частоту колебаний (см. 1.5). Революция в технике УКВ" произошла в 1930 — 1940 гг., и теперь устройства, на которых были проведены знаменитые опыты Герца, Попова и др., представляют лишь исторический интерес. Основной недостаток передатчика Герца — это затухание колебаний и большая ширина спектра излучаемых частот. В современных генераторах УКВ (клистронах и магнетронах) взаимодействие электронного пучка и волн, возникающих в резонаторе, происходит по-иному, что позволяет поднять верхнюю границу частот (v 30 ГГц) и резко увеличить мощность сигнала, достигающего иногда десятков миллионов ватт в им пульсе. Положительными свойствами подобных излучателей являются высокая монохроматичность электромагнитной волны (излучается строго определенная частота) и крутой фронт временных характеристик сигнала. В качестве приемника УКВ-излучения обычно используют вибратор или объемный резонатор с кристаллическим детектором, имеющим резко нелинейные свойства, с последующим усилением низкочастотного сигнала.  [c.10]

Рис. 40,11. Характеристики излучателей запаздывающих нейтронов [9] Рис. 40,11. Характеристики излучателей запаздывающих нейтронов [9]
И напряжения на излучателях удалось снизить транзитный поток до 30 % (рис. 7.11) при снижении максимального теплопритока до 2,7 кВт/м и повышении начальной температуры до 66 °С. Поскольку изменение параметров было незначительным, товарный вид и механические характеристики поверхностного слоя не изменились. Изменение температуры 3 поверхности батона полностью согласуется с изменением теплопритоков для исходного и рационального режимов.  [c.165]

Погрешности рентгеновского излучателя связаны с нестабильностью параметров питания (напряжения и тока, формы и длительности импульса), погрешностями фильтрации н изменения характеристик излучения в процессе работы, размерами фокуса и уровнем афокального излучения, неоднородностью распределения излучения в рабочем телесном угле, нестабильностями излучения, вызванными внутренними процессами рентгеновского источника, механическими н тепловыми нагрузками на источник в процессе сканирования, вибрациями отдельных элементов излучателя и т. п.  [c.450]


Линейное движение осуществляется со скоростью, достаточной для обеспечения необходимой экспозиционной дозы D . Диапазон линейных перемещений должен превышать размеры контролируемого объекта, что позволяет осуществлять коррекцию метрологических характеристик измерительного канала в ходе всего процесса сканирования. Эго положение облегчается тем, что в системе обычно имеется еще один — опорный детектор, идентичный с измерительным, но жестко связанный с излучателем и формирующий необходимый сигнал /о (Й, используемый для непрерывной коррекции на мгновенные нестабильности параметров рентгеновского излучения согласно соотношению (2). Спектральные, временные и прочие характеристики опорного канала обычно выбираются максимально близкими к средним данным измерительного канала с обеспечением имитации средних свойств объекта. Единственным отличием является более высокое отношение сигнала к шуму по опорному каналу, не связанному с ослаблением излучения через объект.  [c.462]

Дальнейшее изложение вопроса дано применительно к полю излучения по амплитуде. Характеристики преобразователя как приемника определяются при использовании его в качестве излучателя на основе принципа взаимности.  [c.214]

Пьезоматериалы для излучателя и приемника выбирают одинаковыми (чаще всего ЦТС-19), хотя раздельные излучение и прием позволяют улучшать характеристики ПЭП путем выбора пьезоэлементов из разных материалов, наилучшим образом работающих либо на излучение, либо на прием.  [c.155]

Материал концентратора должен обладать высоким коэффициентом отражения, достаточной механической п термической прочностью, устойчивостью к воздействию окислителей и коррозии, а также согласованностью спектральной характеристики отражения со спектральной характеристикой излучателя.  [c.286]

Ванны первой группы (емкостью от 2,5 до 40 л) представляют собой стальные каркасы на колесах, в которые вмонтированы фарфоровые сосуды емкостью от 2,5 до 40 л. Магнитострикционные излучатели укреплены на дне ванн. Ванны рассчитаны на ультразвуковую промывку мелких и средних деталей. Техническая характеристика ванн приведена в табл. 35.  [c.200]

Из формулы (3) следует, что для обеспечения малых флуктуационных ошибок при максимально допустимой из технических соображений постоянной времени прибора необходимо использовать излучатели с достаточной интенсивностью излучения. Постоянная времени прибора, характеризующая его инерционность или запаздывание, как правило, определяется эксплуатационными характеристиками прибора. Поэтому флуктуационная ошибка может быть уменьшена в основном за счет увеличения интенсивности излучения, что достигается выбором изотопа с малым периодом полураспада или увеличением количества изотопа, следует учитывать явление самопоглощения.  [c.282]

Показатели и можно было бы увязать с условиями теплообмена в топочных камерах. Но для этого пришлось бы отказаться от учета особенностей выгорания газа по высоте топки и влияния вторичных излучателей тепла, рассматривая только степень заполнения топочного объема факелом с определенными радиационными характеристиками.  [c.44]

Рис. 69. Характеристика разложения метана при нагревании в кварцевой трубке и зависимость максимальной излучатель-ной способности коксовального газа (в относительных единицах) От степени подогрева его Рис. 69. Характеристика разложения метана при нагревании в кварцевой трубке и зависимость максимальной излучатель-ной способности коксовального газа (в <a href="/info/197602">относительных единицах</a>) От степени подогрева его
Для измерения геометрических характеристик линии сварки и самого шва в зоне сварки применяется способ сканирования луча лазерного дальномера вокруг точки сварки. Этот способ адаптивной сварки иллюстрируется рис. 5.18. В качестве излучателя здесь используется полупроводниковый лазер с мощностью импульса от 1 до Ш Вт, работающей в инфракрасном диапазоне. На свариваемые поверхности оптическая система лазера проецирует световое пятно диаметром 0,3 мм. Другая оптическая система воспринимает отраженный луч и фокусирует изображение пятна на фотоприемники прибора с зарядовой связью (ПЗС) с разрешающей способностью порядка 10 мкм.  [c.175]


Осн, параметры, определяющие пространственную избирательность Г, а.,— характеристика направленности и коэф. концентрации (см. Направленность акустических излучателей и приёмников). Способность Г. а. преобразовать энергию (обычно из электрической в акустическую при излучении и акустической в электрическую при приёме) характеризуется чувствительностью, излучаемой мощностью и уд, излучаемой мощностью.  [c.462]

Выразим / 1, / 02 —энергетические светимости абсолютно черных поверхностей в (13.54) через пх излучательиую характеристику и температуры по закону Стефана —Больцмана  [c.289]

Расчет излучательных характеристик элементарного слоя, когда задано собственное излучение образующих его частиц, представляет самостоятельный интерес. При этом оказывается возможным определение двух характеристик степени черноты элементарного слоя в неизотермичных условиях и эффективной излучатель-ной способности поверхности частицы в дисперсной среде. Эти характеристики можно вычислить, если известны компоненты потока в элементарном слое [178].  [c.155]

Хотя полость черного тела является идеальным тепловым излучателем, для воспроизведения и передачи МПТШ-68 она не всегда удобна. Для части МПТШ-68, определяемой реперными точками и термометром сопротивления, именно он служит для поддержания и передачи шкалы, а не печь, масляная ванна или криостат. Различие между двумя частями шкалы принципиально. В нижней части МПТШ-68 величина Тее определяется через характеристики термометра, т. е. через W(Tei) и Е Тв8)-При более высоких температурах Т а определяется свойствами излучателя в виде черного тела, а не прибором, применяемым в качестве термометра. Согласование с определением шкалы значительно лучше, если она поддерживается воспроизводимым излучателем, а не прибором, который измеряет излучение. Действительно, воспроизведение и передача шкалы с помощью при-  [c.349]

В литературе имеются довольно обширные табличные данные по излучатель.ной способности различных материалов. Однако из-за существующей неопределенности в классификации состояния поверхности и из-за методических ошибок табличные значения радиационных характеристик не всегда с высокой точностью могут описать свойства данной поверхности, для которой должен быть выполнен расчет. Особенно большие расхождения встречаются в оценках е металлов. Поэтому для выполнения особо точных расчетов теплообмена излучением необходимо либо специально определять радиационные характеристики кон1фетных поверхностей, участвующих в теплообмене, что крайне трудоемко, либо  [c.27]

Здесь также необходимо сделать еще одно замечание. При выводе выражения (2-89) не учитывались характеристики повер Сности излучателя, поэтому степень черноты, подсчитанная из выражения (2-89), может не совпадать с экспериментальными данными. Ряд значений е для различных материалов одного типа, например карбидов или боридов, вычисленных с помощью формулы (2-89) и расположенных по убыванию или по возрастанию, совпадает с таким же рядом значений е, полученных для соединений одного типа экспериментальным путем.  [c.65]

Характеристика а-, р- и уизлучений основных изотопов, входящих в состав твэлов, приведена в работах [7, 8]. Наибольший вклад в дозу от у-излучателей обусловлен присутствием Ра234 и2), полная у-постоянная которого /Су =6,4 р-см ДчУ. Хмкюри). При высоком обогащении урана возрастает вклад в поле у-излучения от Т11231(и )с численным значением /Су = = 0,5 р см 1 ч-мкюри).  [c.227]

Таким образом, интерферометр Майкельеона можно исполь зовать для экспериментального определения важнейших характеристик излучателя — длины 1 огерентности L , и врем( 1]и когерентности т ог  [c.232]

Магнитострнкционные материалы. Основными характеристиками магнитострикционных материалов (см. табл. 27.32), применяющихся для изготовления магнитострикционных преобразователен, являются коэффициент магнитомеханической связи К, квадрат которого равен отношению преобразованной энергии (механической или магнитной) к подводимой (соответственно магнитной или механической), динамическая маг-гщтострикционная постоянная a=(da/dS)s и маг-ьитострикционная постоянная чувствительности Л= ((ЗВ/а)где а — механическое напряжение, Я/м , В — магнитная индукция, Тл, а индексы и Я означают неизменность деформации и магнитного поля. Величина а существенна для работы излучателей, а Л — для работы приемников. Плотность р и модуль Юнга Е определяют резонансную частоту преобразователей от механической прочности, магнитострикции насыщения X и индукции насыщения Вь зависит предельная интенсивность магнитострикционных излучателей механическая добротность Q, удельное электрическое сопротивление р.-,л и коэрцитивная сила Не определяют потери энергии на вихревые токи и гистерезис при работе преобразователя. Значения К, а, Л существенно зависят от напряженности подмагничивающего поля, значение которого Яопт, отвечающее максимуму К, обычно называют оптимальным.  [c.615]

В технических требованиях обычно указьшают следующее дальность действия прибора или его (увствительность, при этом оговариваются спектральные характеристики полезного излучателя, фонов и возможных искусственных помех  [c.7]

Энергетические характеристики оптического излучения описываются квантовой теорией, в соответствии с которой любой излучатель представляет собой совокупность квантовых осцилляторов. Суммарное излучение излучателя определяется в результате статистического осреднения излучения отдельных осцилляторов. Спектральные характеристики излучения зависят от агрегатного состояния и 1лучающего вещества, а также от способа возбуждения энергетических уровней его атомов и молекул. По характеру излучения различают источники тепловые с непрерывным спектром излучения, в которых энергия излучения образуется за счет преобразования тепловой энергии люминесцентные, как правило, с линейчатым  [c.42]


Поскольку спектральный коэффициент излучения зависит не только от физических характеристик материала излучателя, но и от состояния (микроструктуры) излучан1щей поверхности, то получить аналитические ави-  [c.43]

Интенсивность у-нейтронных радиоактивных источников примерно на два порядка ниже а-нейтронных, но зато они сравнительно моноэнергетичны благодаря тому, что при одной и той же энергии порядка нескольких МэВ импульс фотона почти на два порядка меньше импульса t-частицы. Комбинируя различные у-излучатели с дейтерием и бериллием, можно получать нейтроны различных энергий от 0,12 до 0,87 МэВ Характеристики некоторых у-нейтрон-ных источников приведены в табл. 9.1.  [c.484]

Количество энергии излучения, передаваемое от одной поверхности к другой, определяется с учетом излучательиых, поглощательных и отражательных характеристик обеих поверхностей, а также с учетом углового кос ффицментл излучения.  [c.287]

Рассеяние рентгеновского излучения слабо зависит от энергии проникающего излучения, тогда как поглощение пропорционально " . Из соотношений между сечениями поглощения и рассеяния можно получить значения ускоряющих напряжений (У на излучателе рентгеновских аппаратов, которые являются предпочтительными при проведении радиоско-пического контроля. В частности, для изделий из легких сплавов на основе алюминия и титана при I/ около 1Q0 кВ ослабление первичного пучка за счет процессов поглощения и рассеяния равновероятно, а при 1У около 300 кВ только 10 % пучка поглощается. Равновесие между поглощением и рассеянием для сплавов на основе железа наблюдается при ускоряющем напряжении 250 кВ, а соответственно небл эгопрнятное сочетание указанных характеристик при напряжении 400 кВ. Таким образом, исходя из критериев максимального качества теневого изображения и минимальной радиационной нагрузки на обслуживающий персонал, максимальные уровни ускоряющих напряжений на излучателях в радиоскопических системах контроля следует выбирать равными 100 и 250 кВ соответственно для изделий из легких сплавов и стали.  [c.370]

После выбора максимального уско-ряющего напряжения определяют мощность излучателя, исходя из необходимого уровня мощности дозы в непосредственной близости радиациен-иого преобразователя радиоскопи-ческой системы. Эта характеристика  [c.370]

Кроме основного лепестка диаграмма может иметь боковые лепестки, интенсивность которых составляет приблизительно 15. .. 20 %. Помимо этого используют такие характеристики акустического поля, как протяженность б.-1ажней зоны, неравномерность поля на определенном расстоянии от излучателя. Для фокусирующих преобразователей важно знать фокусное расстояние Fo (расстояние от центра излучателя до точки, где достигается максимальная чувствительность), протяженность и ширина фокальной области, на границе которой максимальное значение уменьшается на 3 дБ (б дБ для поля излучения — приема).  [c.137]

Излучатель представляет собой протяженный высокотемпературный нагреватель с небольшим поперечным сечением и большой энергией излучения. Хорошими характеристиками обладают кварцевые галогенные лампы, представляющие собой цилиндрическую кварцевую колбу с моноспиральным вольфрамовым телом накала, расположенным соосно с колбой. Лампы наполнены инертным газом с добавкой небольшого числа галогенного соединения для обеспечения высокой стабильности световых и электрических параметров на протяжении всего срока службы. В табл. 4 приведены некоторые типы и параметры галогенных ламп. В условном обозначении типа лампы первое число указывает напряжение (В), второе — мощность (Вт), буква К — кварцевая, Г — галогенная, Д — дифференциального излучения, Т — термоизлучатель.  [c.286]

Для эффективного использования метода инфракрас ного облучения надо предварительно тщательно изучить спектральные характеристики нагреваемого материала и соответственно подобрать характеристики излучателей. Излучатели должны быть такой формы и так расположены по отношению к материалу или изделию, чтобы возможно полнее и равномернее осветить все поверхности, подлежащие нагреву. Для небольших сушилок нетрудно выполнить механизм, позволяющий передвигать излучатели в направлении к материалу и тем изменять расстояние до облучаемой поверхности, влияющее на мощность излучения и его равномерность. Это облегчает регулирование режима, что важно при переменных условиях сушки.  [c.158]

Совокупность внешних факторов оэху при заданном типе и структуре ЭХУ содержит верхнюю температуру цикла ПТП Тг, температуру рефрижерации парокомпрессионной холодильной машины Ткоэффициенты и параметры, характеризующие степень необратимости термодинамических процессов в теплоэнергетическом оборудовании установки характеристики концентратора, холодильников-излучателей и окружающей среды, а также теплофизические свойства ДФС и толуола.  [c.203]

Одноступенчатые циклы на парах ртути, калия, натрия, цезия и рубидия в настоящее время реализуются в энергетических установках с небольшим сроком службы и специфическими условиями работы. Так, в космических установках высокая температу-тура конденсации паров металлов обеспечивает получение приемлемых весогабаритных характеристик конденсаторов-излучателей. В будущем возможно использование паров металлов в транспортных и передвижных энергетических установках.  [c.24]

Ниже рассматриваются элементы теории оптической пирометрии, основанной на измерении яркости только в видимой части спектра излучения (Х = 0,4 -0,8 мк). В этом диапазоне длин волн при температурах излучателей, обычно встречающихся в печах, (<3 000° К) для определения спектральных характеристик интенсивности пзлучепия может быть использована формула Вина (3-3). Спектральная яркость излучения черного тела при температуре Т на основе этой формулы представляется в следующем виде  [c.42]

АКТИВНАЯ АНТЕННА — антенна, содержащая в своей структуре активные y Tpoii TBa, в частности усилители мощности (переданная А. а.) или малошумящие усилители (приёмная А. а.). Чаще всего А. а. явля-ется антенная решётка. Исполь.эование активных устройств в передающей А. а. позволяет компенсировать потери в трактах и обеспечивать оптим. распределение амплитуд и фаз токов по излучающей апертуре. Напр., если усилители мощности, подключённые непосредственно к излучателям А. а., работают в режиме насыщения, то независимо от используемой системы возбуждения можно поддерживать постоянным распределение амплитуд токов в излучателях, что обеспечивает макс. коэф. направленного действия и повышает стабильность работы антенны. Приёмная А. а. со встроенными малошумящими усилителями имеет существенно большее отношение сигнал/шум на входе приёмника по сравнению с аналогичной пассивной антенной. Регулируя усиление активных устройств, можно эффективно осуществлять управление диаграммой направленности, независимо регулируя амплитуды и фазы токов в элементах решётки (напр., в адаптивных антеннах). Амплитудно-фазовое управление диаграммой направленности можно реализовать в приёмных А. а. с преобразованием радиосигналов (папр., аналого-цифровым) соответствующим выбором амплитуд н фаз весовых коэф. при обработке. Недостатки А. а. активные элементы выделяют тепло, ра.эброс их характеристик приводит к дополнит, искажениям поля.  [c.38]

Многосеточные электрич. зонды являются электрич. анализаторами заряж. частиц. На входе зонда плазма разрывается большой разностью потенциалов и анализируется электронная или ионная компонента. В ВЧ- и СВЧ-эондах конец ВЧ-токопровода используется как эл.-магн. излучатель. По изменению характеристик излучения и распространению возбуждаемых в плазме волн оцениваются её параметры (обычно п, v ).  [c.610]



Смотреть страницы где упоминается термин Излучатель Характеристики : [c.343]    [c.150]    [c.464]    [c.482]    [c.201]    [c.503]    [c.50]    [c.152]    [c.386]    [c.539]    [c.73]    [c.75]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.237 ]



ПОИСК



Аппаратура для изучения характеристик стержневых излучателей

Газоструйный излучатель Гартмана, измерения характеристик

Излучатели

Излучатели АЧТ — Технические характеристики

Излучатели мощные, характеристика

Многосвистковые излучатели технические характеристики

Поршневой излучатель в малом экране. Частотная характеристика излучения

Характеристики инфракрасных излучателей и нагреваемых материалов

Характеристики направленности излучателя звука в форме окружности и круглой поршневой диафрагмы



© 2025 Mash-xxl.info Реклама на сайте