Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Бернулли степенные задачи

Вот выдержки из подлинного текста И. Бернулли Тончайшим, славящимся во всем мире математикам. Как мы достоверно знаем, едва ли существует что-либо иное, что могло бы в большей степени побудить благородные умы к совершению дел, ведущих к умножению знаний, чем предложение трудных, но в то же время полезных вопросов их разрешением, с помощью того или иного метода, они достигнут славы для своего имени и воздвигнут себе вечный памятник у потомков . Механико-геометрическая задача о линии наиболее скорого спуска формулируется в следующем виде Определить кривую линию, соединяющую две данные точки, расположенные на различных расстояниях от горизонта, не лежащих на одной и той же вертикальной линии, и обладающую тем свойством, что тело, движущееся по ней под влиянием собственной тяжести и начинающее свое движение из верхней точки, достигает нижней точки в кратчайшее время . См. Б е р-н у л л и И. Избранные сочинения по механике. М., 1937, с. 21—23. До опубликования этой задачи (в 1969 г.) И. Бернулли посылал ее Лейбницу, который быстро ее решил и посоветовал Бернулли обнародовать эту столь прекрасную и до сих пор неслыханную задачу .  [c.205]


Рассматривая решение задачи о колебаниях маятника, автор показывает, как можно получить аналогичное дифференциальное уравнение для случая колебаний в среде, сопротивляющейся пропорционально произвольной степени и" скорости движения. Здесь же он сравнивает свой принцип с методами, ранее предложенными Д. Бернулли и Эйлером, которые он считает теоретически недостаточно обоснованными.  [c.266]

Теория колебаний развилась из исследований Галилея о малых колебаниях маятника. Однако опыты Галилея, в сущности, лишь наметили путь для дальнейшей работы в этой области. Возникновение учения о колебаниях упругих тел в механике связано с именами академиков Петербургской Академии наук — Д. Бернулли, Эрмана и Л. Эйлера. В 1716 г. Эрман нашёл решение некоторых сложных задач о колебаниях маятника в 1740 г. Эйлер обобщил принцип Эрл)ана и применил его к исследованию колебаний струн и тонких брусьев. В 1751 г, Эйлер и Бернулли впервые получили дифференциальные уравнения поперечных колебаний. Хотя общая теория колебаний систем с конечным числом степеней свободы была дана в 1762—1765 гг. в работах Лагранжа, но по его же собственному признанию эти работы представляли собой возврат к методу Эрмана и Эйлера .  [c.769]

До открытия общих уравнений существовала теория кручения и изгиба балок, ведущая свое начало от исследований Галилея и соображений Кулона. Проблемы, являющиеся предметом этих теорий, принадлежат к числу наиболее важных по своему практическому значению, так как многие проблемы, с которыми приходится иметь дело инженерам, в грубом приближении сводятся к вопросам сопротивления балок. Коши был первым исследователем, который пытался применить общие уравнения к проблемам этого рода и, хотя его исследование о кручении прямоугольной призмы 85] оказалось ошибочным, оно все же имело большое сторическое значение, так как он установил, что поперечные сечения не остаются Плоскими, Значение его исследований для практических приложений было невелико. Практические руководства первой половины прошлого столетня содержат теорию кручения, которая приводит к выводам, принадлежащим, как мы уже указывали. Кулону этот вывод состоял в том, что сопротивление кручению равно произведению упругой постоянной на величину угла закручивания, отнесенного к единице длины (степень кручения), и на момент инерции поперечного сечеиия. В отношении изгиба практические руководства этого времени следовали теории Бернулли-Эйлера (в действительности принадлежащей Кулону), согласно которой сопротивление изгибу связано только с растяжением и сжатием продольных волокон. Сен-Венану принадлежит заслуга приведения проблемы кручения и изгиба балок в связь с общей теорией. Он учитывал трудность нахождения общих решений и настоятельную необходимость получения в практических целях какой-либо теории, которая могла бы служить для определения деформаций в сооружениях ему было вполне ясно также, что только в очень редких случаях можно знать точное распределение нагрузки, приложенной к части какой-либо конструкции это привело его к размышлениям о методах, применявшихся к решению частных задач до того, как были получены общие уравнения. Таким образом о пришел к изобретению полу-обратного метода, который носит его имя. Многие из обычных допущений и выводов, оказываются верными, по крайней мере, в большинстве случаев следовательно, сохраняя некоторые из этих допущений и выюдов, можно упростить уравнения и получить их решения правда, пользуясь этими решениями, мы не можем удовлетворить любым наперед заданным граничным условиям однако же граничные условия практически наиболее важного типа могут быть удовлетворены.  [c.32]


ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Пример 4. КОЛЕБАНИЯ НИТИ С БУСИНКАМИ. Как отмечают в своей книге Ф. Р. Гантмахер и М. Г. Крейн [14, с. 142—143], этой задаче принадлежит совершенно особая роль в истории механики и математики. Пожалуй, она была первой задачей на исследование малых колебаний системы с п степенями свободы. В связи с ней Ж. Даламбер предложил свой метод интегрирования системы линейных дифференциальных уравнений с постоянными коэффициентами. Отправляясь от нее, Даниил Бернулли высказал свое знаменитое предположение, что решение задачи о свободном колебании струны можно представить в виде тригонометрического ряда, что вызвало между Л. Эйлером, Ж. Даламбером, Д. Бернулли и др. дискуссию о природе тригонометрических рядов, затянувшуюся на несколько десятилетий. Впоследствии Ж. Л 1гранж показал более строго, как можно предельным переходом из решения задачи о колебаниях нити с бусинками получить решение задачи о колебании струны. Наконец, этой задачей (и аналогичной задачей из теории теплопроводности) руководствовался III. Штурм в своих замечательных исследованиях по высшей алгебре и теории дифференциальных уравнений .  [c.126]



Смотреть страницы где упоминается термин Метод Бернулли степенные задачи : [c.150]   
Методы и задачи тепломассообмена (1987) -- [ c.241 ]



ПОИСК



Бернулли

Задача и метод

Метод Бернулли



© 2025 Mash-xxl.info Реклама на сайте