Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Присоединенная каверна (кавитация образование

Гидродинамическая кавитация не развивается в прямолинейном течении. Изменение направления или сближение линий тока является типичной особенностью процесса гидродинамической кавитации. Образование каверны вследствие изменения давления в потоке жидкости без изменения направления течения по своей природе ближе к кипению. Такая каверна не будет присоединенной. Пример подобного течения приведен на фиг. 5.3. Открытая с одного конца тонкая горизонтальная трубка соединена с трубопроводом большего сечения, по которому течет вода под давлением 3,16 ата при температуре 120 °С. Течение в горизонтальной трубке до точки В типично для всех однофазных течений жидкости. В точке А происходит местное падение давления, обусловленное ускорением течения от значения скорости в основном трубопроводе до скорости в горизонтальной трубке. Затем давление убывает почти линейно до точки В, в которой оно равно 2,11 ата. Это давление соответствует давлению насыщенного водяного пара при температуре 120°С. Здесь начинает образовываться пар, который сразу за этим сечением появляется в виде мелких пузырьков, поскольку далее вниз по течению вода перегрета. По мере дальнейшего понижения давления скорость парообразования быстро возрастает, так как степень перегрева увеличивается. В результате течение превращается в двухфазное и ниже по течению в нем появляется все больше пузырьков, размер которых увеличивается. В некоторой точке между точкой В и открытым концом  [c.189]


Рассмотрение такой точки зрения показывает, что при кавитационных испытаниях моделей. возникает настоящая дилемма. При моделировании натурного объекта по числу Фруда предполагается, что определяющими являются силы тяжести. Это обычно соответствует действительности, когда гидравлические явления связаны с наличием свободных поверхностей кавитация определенно относится к таким явлениям. Однако существует много типов течений со свободной поверхностью, в которых силы тяжести не являются определяющими. К сожалению, имеется убедительное экспериментальное подтверждение, что силы тяжести являются важными для некоторых кавитационных областей. Так, на фиг. 6.10, заимствованной из работы [45], показаны присоединенные каверны, образовавшиеся за двумя геометрически подобными телами вращения. На фиг. 6.10 даны виды сбоку и снизу одного и того же тела и охватывающей его каверны (для получения вида снизу камера направлялась вертикально вверх). Число Фруда было достаточно малым. На фиг. 6.10, в показано меньшее по размерам тело, которое испытывалось при значительно большей скорости. Число Фруда при этом было почти на порядок больше. Типы течения в нижнем по потоку конце каверны для этих двух тел совершенно различны. В эксперименте с малым числом Фруда подъемная сила каверны вызывает вертикальное возмущение и возникающее при этом направленное вниз движение окружающей жидкости при обтекании каверны приводит к образованию пары вихрей. В эксперименте с большим числом Фруда (фиг. 6.10, в) каверна  [c.299]

Кавитация может влиять на сопротивление формы вследствие изменения течения около погруженного тела, вызывающего изменение распределения давления и проекции сил, действующих на тело в направлении течения. Одно из проявлений такого влияния состоит в том, что слабая кавитация, например, сразу же после ее возникновения может вызвать переход ламинарного пограничного слоя на плохо обтекаемом теле в турбулентное и смещение точки отрыва пограничного слоя. Линии тока основного течения сдвинутся вследствие уменьшения зоны отрыва, и распределение давления по поверхности тела изменится. Другое проявление влияния кавитации заключается в том, что большая зона кавитации, например, на теле, образующая которого совпадает с линией тока, непосредственно изменяет линии тока основного течения как вследствие смещения линий тока при высокой концентрации перемещающихся каверн, так и вследствие образования присоединенной каверны. В результате смещения линий тока основного течения изменится распределение давления  [c.321]


Таким образом, возникает вопрос о механизме потерь энергии в условиях перемещающейся кавитации, так как в этом случае отсутствует возвратное течение, позволяющее объяснить эти потери. Согласно простейшей гипотезе, объем каверн, образующихся в единицу времени, одинаков в обоих случаях и работа, затраченная системой на образование этих каверн, одинакова независимо от типа кавитации. Часть этой работы, которая не возвращается в систему, представляет потери энергии. В случае присоединенных каверн эти потери определяются влиянием вязкого трения в процессе смешения, вызванном возвратным течением. В случае перемещающейся кавитации энергия, требуемая для создания радиального течения около каждой пульсирующей каверны, не полностью возвращается в основной поток, а частично рассеивается вследствие вязкого трения и расходуется на образование сферических ударных волн.  [c.324]

В тех случаях, когда имеется основной поток, картина существенно усложняется, так как образование и схлопывание каверн обычно происходит в разных местах. Если условия на поверхности тела или границе течения точно соответствуют условиям возникновения кавитации, то каверны могут схлопываться рядом с местом их образования. Однако в ограниченных областях условия для возникновения кавитации не могут существовать длительное время. Вместо этого устанавливаются давление и другие параметры потока, соответствующие скорее стадии развитой кавитации. В этом случае точка минимума давления и зона схлопывания каверны разделены некоторым расстоянием независимо от того, идет ли речь об отдельном пузырьке в потоке жидкости или о более сложном типе присоединенной каверны, о которой говорилось в гл. 5.  [c.382]

Присоединенной кавитацией называется кавитация с отрывом потока жидкости от твердой границы обтекаемого тела или стенки канала с образованием полости или каверны на Твердой границе [53]. В отличие от отрывной такую кавитацию Называют также поверхностной, имея в виду расположение каверн относительно стенки [50]. Это название представляется менее Удачным. Неподвижная ( оседлая ) или присоединенная каверна  [c.7]

Термином присоединенная кавитация обозначают явление образования каверн, примыкающих к поверхности тела, т. е. развитую кавитацию.  [c.399]

Перемещающаяся нестационарная кавитация и присоединенная кавитация имеют одно общее свойство в обоих случаях благодаря образованию полостей снимается растягивающее напряжение, которое создается в жидкости в начале зоны кавитации. В общем случае перемещающаяся кавитация проще присоединенной. Однако часто очень трудно отделить перемещающуюся кавитацию от присоединенной, при которой имеются перемещающиеся каверны, захватываемые жидкостью при движении вдоль поверхности основной каверны.  [c.22]

Присоединенная кавитация, несомненно, возмущает течение в пограничном слое. С одной стороны, поскольку жидкость полностью отрывается от поверхности у начала кавитационной зоны и присоединяется к ней только у ее конца, обычное поверхностное трение на этом участке поверхности отсутствует. В то же время образуется возвратное течение, которое создает отрицательное трение. С другой стороны, возвратное течение, вероятно, состоит в основном из жидкости, находившейся в пограничном слое перед кавитационной зоной. Следовательно, непосредственно за каверной должна образоваться область восстановления пограничного слоя, в которой обмен количеством движения несколько больше среднего, что должно компенсировать отрицательное трение возвратного течения. В конечном счете при образовании зоны присоединенной кавитации поверхностное трение, по-видимому, уменьшается.  [c.321]

Экспериментально и теоретическим анализом установлено, что в случае внезапной остановки тела каверна отрывается от тела и развивается независимо от него. При движении с кавитацией диска очень малой массы каверна стремится перейти к сферической форме. С переходом каверны к сферической форме соответствующая присоединенная масса возрастает пропорционально радиусу пузыря. Использование принципа независимости расширения каверны позволило изучить образование и развитие каверны во взволнованной жидкости (Г. В. Логвинович, 1964).  [c.43]


Присоединенной кавитацией называется явление, возникающее иногда после начала кавитации, при котором поток жидкости отрывается от твердой границы обтекаемого тела или стенки канала с образованием полости, или каверны, на твердой границе, Неподвижная, или присоединенная, каверна устойчива только в квазистационарном смысле. Ее граница иногда имеет вид поверхности интенсивно кипящей турбулизованной жидкости. В других случаях поверхность раздела между жидкостью и большой каверной может быть гладкой и прозрачной. В жидкости около поверхности большой каверны наблюдается большое количество мелких перемещающихся нестационарных каверн. Эти мелкие каверны быстро растут почти до максимального размера у начала основной каверны и практически не изменяются до ее конца, где они исчезают.  [c.21]

Иногда наблюдаются колебания, при которых присоединенная каверна сначала растет, а затем схлопывается вследствие захвата жидкости и последующего заполнения каверны с конца зоны кавитации. Максимальная длина присоединенной каверны зависит от поля давления. Каверна может заканчиваться в точке присоединения основного потока жидкости к поверхности тела на некотором расстоянии от передней кромки каверны (линии отрыва) или может простираться далеко за пределы тела до смыкания основного потока с образованием полости,, охватывающей тело, В последнем случае кавитацию называют суперкавитацией. На фиг. 1,6 и 1.7 показаны присоединенные каверны, причем каверна на фиг. 1,7 представляет собой суперкаверну.  [c.21]

В разд. 1.5 присоединенная кавитация была определена как такой тип кавитации, при котором между направляющей поверхностью и свободной поверхностью потока жидкости образуется статистически фиксированная каверна. Основные особенности присоединенных каверн хорошо видны невооруженным глазом, если существуют условия для образования очень длинных каверн. При таких условиях полностью развитой кавитации жидкость отрывается от поверхности тела в начале зоны кавитации и больше уже не присоединяется к ней (фиг. 5.1). В рассматриваемом случае каверна имеет прозрачную поверхность, сквозь которую хорошо видна направляющая поверхность, а пространство между поверхностями каверны и тела заполнено паром или газом, В конце каверны наблюдаются значительные возмущения, и течение здесь, по-видимому, неустойчиво. Длина каверны колеблется с достаточно большой частотой, и создается впечатление, что эти колебания сопровождаются обильными брызгами. Однако вся каверна, кроме ее конца, ведет себя так, как если бы она была частью тела. Можно предполагать, что такое же поле течения существовало бы около твердого тела, образованного смоченной передней частью и свободной поверхностью каверны. Лабораторные исследования подтверждают это предложение, если соответствующим образом учитывается трение на поверхности такого твердого тела. Длинные каверны, возникающие в условиях полностью развитой кавитации, называются также суперкавернами.  [c.187]

В некоторых случаях присоединенная каверна может стабилизироваться до такой степени, что ее длина колеблется около среднего значения, но сама она не проходит фазы полного заполнения, отрыва и повторного образования. Цикличность может сохраниться, но периодическое накопление и выброс жидкости, внесенной в каверну обратной струей, будет происходить только в ее концевой зоне. Именно так ведут себя каверны, замыкающиеся на криволинейных хвостовых частях симметричных стоек и погруженных тел (разд. 5.4.4). В этом смысле они являются квазистационарными. Такие квазистационарные каверны, длина которых меньше длины тела, образуются на гидропрофилях, обтекаемых под углом атаки. Длинные суперкаверны, тянущиеся за телом, также стремятся к стационарному состоянию. Ниже в этой главе при рассмотрении суперкавитации будет показано, что прогресс в исследовании стационарных каверн был достигнут благодаря линеаризации, которая не требует учета условий в обратной струе, образующейся в конце каверны. Линейная теория для расчета двумерных профилей с замыкающимися на поверхности тела кавернами была применена в работах [1,26, 39]. Акоста [1] рассматривал плоскую пластинку с каверной, присоединенной на острых передней и задней кромках. Он получил следующие соотношения для длины каверны 1с и коэффициента подъемной силы для пластины с хордой I в зависимости от числа кавитации К и угла атаки а  [c.209]

Напомним, что отожженный алюминий был выбран для данных экспериментов исходя из предположения, что любой удар достаточной интенсивности, способный вызвать разрушение обычных конструкционных материалов (включая усталостное разру-ш ение), приведет к остаточной деформации материала поверхности алюминия. Поскольку нет оснований сомневаться в справедливости этого предположения, то на основании проведенных экспериментальных исследований можно заключить, что при кавитации удары разрушающей силы наносятся с очень низкой частотой. Например, основанный на данных о частоте расчет образования впадин и средней площади впадины в случае кавитации, происходящей при скорости течения 27,45 м/с, показывает, что выбранная точка поверхности оказывается внутри зоны разрушающего действия удара лишь приблизительно один раз каждые 100 мин. Случайно оказалось, что в одном из таких экспериментов поверхность фотографировалась через каждые полтора часа. Таким образом, последовательные фотографии соответствуют приблизительно одному удару для данной точки поверхности, двум ударам и т. д. На фиг. 8.8 показано пять таких микрофотографий типичного участка зоны максимального разрушения. Вид этих фотографий подтверждает предположение, что кавитационное разрушение, вызываемое присоединенной каверной, обусловлено относительно редкими мощными ударами, которые либо вырывают частицы материала, либо вызывают преждевременное усталостное разрушение. Недавно в Мичиганском университете при проведении испытаний в трубках Вентури подтверждены эти общие выводы и зафиксированы потери веса образцов на ранней стадии эксперимента до того, как на поверхности появились перекрывающиеся впадины [17, 54, 60]. В одном из таких экспериментов [60] образец из нержавеющей стали, предварительно облученный радиоактивными изотопами, испытывался в воде с целью подтвердить  [c.399]


Методика этих испытаний заключалась в проведении серии экспериментов каледый раз с новой алюминиевой моделью. Во всех экспериментах длина каверн поддерживалась постоянной, что соответствует постоянному числу кавитации, а скорость течения изменялась от максимально достижимой в трубе до величины, при которой впадины практически не образовывались. Согласно ранее проведенным экспериментам, вплоть до момента, когда число впадин, приходящихся на единицу площади поверхности, становилось столь большим, что их трудно было сосчитать, частота образования впадин при данных параметрах течения оставалась постоянной. В связи с этим продолжительность экспериментов подбиралась таким образом, чтобы плотность впадин была не слишком большой и не слишком малой, т. е. время эксперимента было самым коротким при самой большой скорости течения и возрастало с уменьшением скорости течения. Во всех случаях поверхность пластин выглядела аналогично. Это позволило предположить, что для приближенной оценки интенсивности кавитации можно использовать частоту образования впадин без учета их размеров. Полученные результаты представлены на фиг. 8.9. Они показывают, что частота образования впадин в сильной степени зависит от скорости течения. Действительно, судя по наклону кривых в логарифмических координатах, она пропорциональна примерно шестой степени скорости. Потребуется еще немало экспериментальных данных, чтобы четко определить область применимости этого соотношения. В случае присоединенных каверн, образующихся при других условиях, были получены другие эмпирические соотношения. Будем пользоваться соотношением  [c.402]

На основании изложенного в данной главе ясно, что еще нет универсальной методики моделирования, позволяющей учесть-масштабные эффекты. На различных стадиях кавитации от начальной до образования больших присоединенных к поверхности каверн и далее до суперкаверн проявляются различные масштабные эффекты. В разд. 6.7 рассматривалась роль термодинамических свойств в случаях развитой кавитации. Даже для воды важна разность температур и, следовательно, термодина-  [c.311]


Смотреть страницы где упоминается термин Присоединенная каверна (кавитация образование : [c.403]    [c.403]    [c.24]    [c.390]   
Кавитация (1974) -- [ c.189 , c.193 ]



ПОИСК



Каверны

Кавитация

Присоединенная каверна (кавитация



© 2025 Mash-xxl.info Реклама на сайте