Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузка, действующая на лопасти несущего винта

Нагрузки, действующие на лопасти несущего винта  [c.105]

Навигационно-вычислительные устройства 378 Нагрев аэродинамический 32 Нагрузка, действующая на лопасти несущего винта 105 Нагрузки опасные 13 Надежность авиационной техники 248—255  [c.415]

Нагрузки при стоянке вертолета. Изгибающие нагрузки на лопасти несущего винта действуют н при стоянке вертолета. Эти нагрузки возникают при порывах ветра, если лопасти не застопорены.  [c.109]


В теории элемента лопасти вычисляют силы, которые действуют на лопасть при ее движении в воздухе, а по ним рассчитывают силы и аэродинамические характеристики всего несущего винта. Теория элемента лопасти — это, по существу, теория несущей линии, примененная к вращающемуся крылу. Предполагается, что каждое сечение лопасти работает как профиль в двумерном потоке, а влияние следа и остальной части винта полностью учтено в индуктивном угле атаки сечения. Следовательно, для решения задачи нужно рассчитать индуцируемые следом скорости на диске винта. Это можно сделать с помощью импульсной теории, вихревой теории или численными методами, учитывая неравномерность поля скоростей протекания. Теория несущей линии основана на предположении, что крыло имеет большое удлинение. Удлинение к лопасти несущего винта связано с коэффициентом заполнения и числом лопастей соотношением % = R/ = N/п)а. Для вертолетных несущих винтов с их малой нагрузкой на диск предположение о большом удлинении обычно справедливо. Однако даже при большом геометрическом удлинении могут существовать области, в которых велики градиенты нагрузки или индуктивной скорости, вследствие чего эффективное аэродинамическое удлинение может оказаться малым. Для несущего винта примерами таких областей с большими градиентами являются концевая часть лопасти и то место на ней, вблизи которого проходит вихрь, сбегающий с предшествующей лопасти.  [c.59]

При статических испытаниях элементы вертолета с помощью специальных приспособлений нагружаются и доводятся до разрушения. Если фактические разрушающие нагрузки равны или немного больше расчетных, статическая прочность конструкции считается достаточной. На статическую прочность могут проверяться элементы, испытывающие и переменные нагрузки. Так, например, проверяется прочность лопастей несущего винта на изгиб под действием собственного веса.  [c.119]

Чаще всего на вертолетах применяется необратимая схема включения гидроусилителей. При этом нагрузки с лопастей несущих винтов полностью воспринимаются гидроусилителями и не передаются на ручку летчика. Бустерные системы для надежности дублируются. У гидроусилителей на линии подачи давления устанавливаются обратные клапаны, исключающие просадку гидроусилителей. Основное назначение этих клапанов — фиксация выходных штоков гидроусилителей в момент перехода с основной гидросистемы на дублирующую. Без обратных клапанов вследствие падения рабочего давления в гидроусилителе при переключении систем может произойти недопустимое произвольное перемещение выходных штоков под действием внешней нагрузки.  [c.166]


Переменная по азимуту аэродинамическая нагрузка, действуютцая на лопасть несущего вивта, а также инерционные силы, возникающие при колебания лопасти, вызывают соответствующие динамические реакции/на втулке. Силы и моменты, действующие на втулку от ка>5 дой лопасти, складываются В соответствии с правилами, изложенными в разд. 6.2. Суммарные силы передаются на фюзеляя вертолета и вызывают его колебания. Такие вибрации типи Шы для всех вертолетов, так как порождаются силами и момен)гами, возникающими при нормальной работе винта в обычнЫх условиях. Они называются  [c.80]

Обычный несущий винт вертолета состоит из двух или большего числа одинаковых, разделенных равными угловыми промежутками лопастей, прикрепленных к центральной втулке. Винт равномерно вращается под действием крутящего момента, который передается, как правило, от двигателя на вал. Подъемные силы и сопротивления лопастей — этих вращающихся крыльев — создают аэродинамический момент, силу тяги и другие силы и моменты несущего винта. Большой диаметр винта, требуемый для эффективного вертикального полета, и большое удлинение лопастей, диктуемое необходимостью иметь высокое аэродинамическое качество вращающихся крыльев, делают лопасти гораздо более гибкими, чем у винтов с большой нагрузкой на диск (например, пропеллеров). Следовательно, при полете аппарата лопасть несущего винта под действием аэродинамических сил будет совершать значительные движения. v3th движения могут вызвать большие напряжения в лопасти или большие моменты в ее корне, которые через втулку передаются вертолету. Поэтому при проектировании лопастей и втулки несущего винта следует позаботиться о том, чтобы эти нагрузки были по возможности малы. Центробежные силы препятствуют отклонению вращаЮ щейся лопасти от плоскости диска, так что ее движение будет наиболее заметным вблизи комля. Вследствие этого поиски прО  [c.20]

Т. е. Up = V - - V и 7- = 2 . Из предположения о малой нагрузке на диск несущего винта вертолета следует, что коэффициент протекания = (У + мал (по импульсной теории типичное значение этого коэффициента на режиме ви-сения составляет 0,05—0,07). Тогда отношение UpJut — V + v)/ Qr) — XR/г тоже мало везде, кроме корневой части лопасти, где мал скоростной напор и нагрузками всегда можно пренебречь. Таким образом, для несущих винтов вертолетов приемлемо предположение о малости углов ф, 6, а, т. е. условие ф, 6, а <С 1. Отсюда следует, что ф ыр/ыу, созф 1, sin ф ф и t/ Uj. Другое предположение состояло в том, что эффектами срыва и сжимаемости можно пренебречь, так что коэффициент подъемной силы является линейной функцией угла атаки, т. е. i = аа. Здесь а — градиент подъемной силы по углу атаки для профиля в двумерном потоке (с учетом реальных свойств воздуха обычно полагают а = 5,7), Тогда формулы сил, действующих в сечении лопасти, принимают вид  [c.64]

ТОГО, при полете вперед периодически изменяются с периодом 2n/Q. Это создает серьезную проблему для конструкторов необходимо каким-то способом уменьшить изгибающие моменты в комлевых частях и снизить напряжения в лопастях до допустимого уровня. Если лопасти жесткие, как у пропеллера, то все аэродинамические нагрузки воспринимает конструкция. У гибких же лопастей под действием аэродинамических сил возникают значительные изгибные колебания, в результате которых аэродинамические силы могут изменяться так, что нагрузка лопастей существенно снизится. Таким образом, при полете вперед азимутальное изменение подъемной силы лопасти вызывает ее периодическое движение с периодом 2n/Q в плоскости, нормальной к плоскости диска (плоскости взмаха). Это движение называют маховым. С учетом инерционных и аэродинамических сил, обусловленных маховым движением, результирующие нагрузки лопасти в комлевой части и момент крена, передающийся на фюзеляж, существенно уменьшаются. Обычно для снижения нагрузок втулки несущих винтов снабжают горизонтальными шарнирами (ГШ). При маховом движении лопасть поворачивается вокруг оси ГШ как твердое тело (см. рис. 1.4). Так как на оси ГШ момент равен нулю, на фюзеляж он вообще не может передаться (если относ оси ГШ от оси вращения равен нулю), а изгибающие моменты в комлевой части лопасти должны быть малы. Несущий винт, у которого имеются горизонтальные шарниры, называют шарнирным винтом. В последнее время на вертолетах с успехом применяют несущие винты, не имеющие ГШ и называемые беешарнирными. При использовании высококачественных современных материалов комлевую часть лопасти можно сделать прочной и в то же время достаточно гибкой, чтобы обеспечить маховое движение, которое снимает большую часть нагрузок в комле лопасти. Вследствие значительных центробежных сил, действующих на лопасти, маховые движения у шарнирных и бесшарнирных винтов весьма сходны. Естественно, нагрузка комлевой части лопасти у бесшарнирных винтов выше, чем у шарнирных, а увеличение момента, передаваемого на втулку, оказывает значительное влияние на характеристики управляемости вертолета. В целом маховое движение лопастей уменьшает асимметрию в распределении подъемной силы по диску винта при полете вперед. Поэтому учет махового движения имеет принципиальное значение в исследовании аэродинамических характеристик несущего винта при полете вперед.  [c.155]


Дженни, Олсон и Лендгриб [J.10] сравнили несколько методов расчета аэродинамических характеристик на режиме висения а) простые формулы с равномерной скоростью протекания и постоянным коэффициентом сопротивления, б) элементно-импульсную теорию, в) вихревую теорию Голдстейна — Локка, г) численное решение с неравномерной скоростью протекания без учета и с учетом поджатия следа (в последнем случае структура следа была заранее задана по экспериментальным данным). Обнаружилось, что классические методы и численное решение без учета поджатия следа завышают величину потребной мощности на висении, причем ошибка возрастает с увеличением нагрузки лопасти Сг/а (а также с увеличением концевого числа Маха и коэффициента заполнения и уменьшением крутки). Ошибки были объяснены тем, что не учтено под-жатие спутной струи или, другими словами, не принята во внимание действительная форма концевых вихрей. На нагрузку лопасти сильное влияние оказывает концевой вихрь, сходящий с предыдущей лопасти, т. е. нагрузка в значительной степени зависит от положения этого вихря по радиусу и вертикали относительно лопасти. Влияние вихря заключается в увеличении углов атаки внешних (для вихря) сечений лопасти и уменьшении углов атаки внутренных сечений. При умеренных (0,06 Ст/о 0,08) и больших нагрузках лопасти вихрь может вызвать срыв в концевой части, а значит, ограничить достижимую нагрузку концевой части и увеличить ее сопротивление, снизив тем самым эффективность несущего винта. Так как в концевой части лопасти нагрузка максимальна, аэродинамические характеристики винта в сильной степени зависят от характера обтекания концевых частей, а следовательно, от небольших изменений положения вихря (а также изменений профиля и формы лопасти в плане). Эффекты сжимаемости тоже играют важную роль, так как число Маха на конце лопасти максимально. Если бы сжимаемость воздуха и срыв не сказывались, влияние концевых вихрей на распределение нагрузки было бы еще сильнее, но эти факторы действуют взаимно исключающим образом. Если поджатием следа пренебречь, то все сечения лопасти становятся внутренними для вихря и он нигде не увеличивает углов атаки. При использовании схемы распределенной по следу завихренности или даже более простых схем влияние концевых вихрей вообще нельзя оценить. Таким образом, уточнение формы следа является решающим моментом в усовершенствовании методов расчета амодинами-ческих характеристик винта на режиме висения. Положение концевого вихря по радиусу и вертикали относительно следующей лопасти, к которой он подходит очень близко, имеет  [c.99]

Теория Гутина дает хорошие результаты для шума вращения винта при статических условиях. Результаты расчетов нескольких первых гармоник звукового давления удовлетворительно согласуются с экспериментальными данными и позволяют получить приемлемую оценку суммарного уровня шума. Для несущего винта вертолета на режиме висения эта оценка обычно неверна. В работе [S.204] установлено, что формулы Гутина существенно занижают все гармоники шума вращения несущего винта на режиме висения, кроме первой, хотя тенденции их изменения в зависимости от концевой скорости и силы тяги винта указываются теорией правильно. При этом отказ от введения эффективного сечения (т. е. интегрирование источников шума по всему диску винта) и от приближения дальнего поля не улучшил сходимости с экспериментом. Так, по расчетам, амплитуды гармоник шума вращения быстро уменьшаются с ростом их номера, тогда как, по данным измерений, они уменьшаются значительно медленнее или даже остаются постоянными, что, по-видимому, связано с тем, что и на режиме висения на лопасти действуют периодические аэродинамические нагрузки. Согласно работам [S.22, S.24], полученный по формулам Гутина шум вращения основной гармоники ниже наблюдаемого на 4 дБ, а амплитуды следующих гармоник быстро уменьшаются с увеличением их номера. В работе [0,11] установлено, что расчеты шума вращения несущего винта по формулам Гутина занижают его уровень, и сделан вывод, что это результат пренебрежения влиянием высших гармоник нагрузки.  [c.843]


Смотреть страницы где упоминается термин Нагрузка, действующая на лопасти несущего винта : [c.20]    [c.792]    [c.509]    [c.138]    [c.637]    [c.22]   
Авиационный технический справочник (1975) -- [ c.105 ]



ПОИСК



Вал несущего винта

Винта лопасть

Лопасти несущего винта

Лопасть

Лопасть винта, действующие на нее нагрузки

Нагрузка, действующая на лопасти

Нагрузки, действующие на зуб

Нагрузки, действующие на лопасти несущего винта

Нагрузки, действующие на лопасти несущего винта

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте