Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера метод моментов количества движения

Гидродинамическая теория рассматривает лопатки как обтекаемые профили, а колесо — как решетку профилей, т. е. рассматривает влияние профиля на процесс в колесе. Несомненно, гидродинамическая теория лучше отвечает существу процесса, но математически очень сложна. Так как гидродинамическая теория не доведена до инженерного метода расчета, то обычно за основу расчета принимают струйную теорию с введением экспериментальных поправочных коэффициентов. Основное уравнение лопаточных машин — уравнение Эйлера — связывает силы, действующие на лопаточное колесо, с кинематикой потока и вытекает из закона момента количества движения.  [c.146]


Уравнение движения жидкости и моментов количества движения были получены в 1755 г. академиком Российской Академии Наук Эйлером (1707—1783 гг.). Эти уравнения лежат в основе возникшей тогда новой науки—гидродинамики со строгими математическими методами решения ее задач.  [c.60]

Конечный контрольный объем также берется неподвижным в пространстве, и в соответствии с методом Эйлера законы переноса вещества, тепла и количества движения могут быть применены к массе жидкости, заполняющей контрольный объем в некоторый момент времени. Этот метод часто используется для одномерного анализа течений жидкости и газа, так как в этом случае нас интересуют главным образом изменения характеристик движения жидкости но направлению течения.  [c.71]

Для решения таких задач эффективным является применение интегралыных форм уравнений количества движения и момента количества движения. Методика их использования проиллюстрирована ка конкретных примерах в гл. 6, 7 н др. в данном параграфе приведены уравнения количества движения и момента количества движения в общей форме, удобной для практического применения. Закон количества движения сформулирован в гл. 3, где в общей форме получено соответствующее уравнение (3.8). Оно, однако, малоудобно для практического применения из-за необходимости вычислять объемный интеграл, требующий знания закона распределения скоростей в этом объеме. Более удобную форму уравнения количества движения можно получить, если перейти от описания потока по методу Лагранжа к описанию по методу Эйлера.  [c.110]

Среди работ, затерянных в безбрежном океане статей и монографий, посвященных задаче трех тел, многие результаты и поныне не утратили своего значения. XVIII в. оставил нам частные решения Л. Эйлера и Ж. Лагранжа, теорию возмущений и метод вариации постоянных . XIX столетию принадлежит великое открытие па копчике пера , сделанное У. Леверрье и Дж. Адамсом. Идея представления решений в виде степеииых и тригонометрических рядов также в духе того столетия для вычисления орбит небесных тел астрономы до сих пор нередко используют методы, восходящие к исследованиям того времени. Итог исследованиям XIX в. подвели Новые методы небесной механики Л. Пуанкаре и знаменитая теорема К. Зундмана об аналитической регуляризации любого решения задачи трех тел с ненулевым значением момента количества движения.  [c.133]


Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

В 1948 г. Л. Г. Лойцянский и А. И. Лурье включили в свой Курс теоретической механики главу Динамика точки и тела переменной массы . Тем же по существу методом, что и Космодемьянский, они выводят основные уравнения динамики системы и твердого тела переменной массы. Однако в качестве интересной иллюстрации применения теоремы количества движения к сплошным средам авторы курса возрождают также подход Л. Эйлера к вычислению реактивной силы водометного судна (и реактивного момента гидравлической турбины), примененный им в середине XVHI в. Изложение теоремы Эйлера в современной векторной форме привело авторов к формулировке главные векторы объемных и поверхностных сил и векторы количества движения масс жидкости, входящих и выходящих сквозь два каких-нибудь сечения трубы в единицу времени, направленные внутрь выделенного объема, образуют замкнутый многоугольник. Совершенно таким же методом, как в свое время Эйлер определял реактивную силу водомета, авторы получили для реактивной силы свободного снаряда выражение  [c.242]


Смотреть страницы где упоминается термин Эйлера метод моментов количества движения : [c.416]   
Прикладная газовая динамика. Ч.1 (1991) -- [ c.0 ]



ПОИСК



Движение, метод

Количество движения

Количество, метод

Метод моментов

Момент количеств движения

Момент количества движени

Эйлер

Эйлера метод

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте