Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания вязкоупругих тел

Рассмотрим колебания вязкоупругого тела. Положим  [c.28]

Свободные затухающие колебания. Пусть вязкоупругое тело подвергается внешним воздействиям в течение некоторого промежутка времени [О, о] и требуется определить движение тела после снятия этих воздействий. В этой задаче перемещения, деформации и напряжения интегрируемы с квадратом на интервале [О, сю] и, следовательно, решение можно разыскивать в виде разложения Фурье (интеграла)  [c.261]


Принципы соответствия справедливы для композитов независимо от того, учитывается или нет микроструктура материала. Если длины волн, определяющие динамический отклик, много больше характерного размера микроструктуры, то, как было указано выше, можно использовать эффективные модули и податливости композитов при этом плотность р относится к объему, много большему объема элемента микроструктуры, т. е. р представляет собой эффективную плотность материала. Большая часть имеющихся вязкоупругих (упругих) решений для ограниченного тела основывается на теории эффективных характеристик композитов. С другой стороны, большинство существующих результатов, найденных с учетом микроструктуры, относится к стационарным колебаниям в неограниченной среде. Как отмечено выше, в обоих случаях справедливы динамические принципы соответствия, поэтому здесь будут рассмотрены оба решения. В том случае, когда принимается во внимание микроструктура материала при переходе от упругих к вязко-упругим решениям, вместо эффективных характеристик используются характеристики отдельных фаз.  [c.165]

Когда в конструкцию намеренно вводится демпфирование, то несколько изменяются и отдельные узлы, поскольку при колебаниях конструкции ее части деформируются и в свою очередь воздействуют на присоединенные вязкоупругие элементы, рассеивающие энергию. Если для того, чтобы успешно решать задачи колебаний конструкции, используются демпфирующие материалы, то необходимо понимать не только поведение демпфирующих материалов, но также и связанную с этим задачу динамики конструкции. Для облегчения понимания часто оказывается эффективнее с точки зрения затрат исследовать математическую модель, дающую упрощенное представление о динамических характеристиках конструкции. Это могут быть математические модели самой разной сложности, начиная от системы с одной степенью свободы, соответствующей телу единичной массы, соединенному с пружиной, и кончая тонкими аналитическими представлениями о непрерывной системе с распределенными массой, жесткостью и демпфирующими свойствами, на которую действует распределенная возмущающая силовая функция. Степень сложности модели, используемой в процессе решения задачи, зависит не только от сложности конструкции, но и от времени и других ресурсов, которыми располагает инженер для решения задачи.  [c.136]


Как уже обсуждалось в гл. 3, динамическое поведение линейных резиноподобных (или вязкоупругих) материалов можно описать с помощью комплексного модуля к + щ), где жесткость k и коэффициент потерь т) зависят как от частоты колебаний, так и от температуры. Поэтому предположения как о вязком, так и о гистерезисном демпфированиях не позволяют достоверно описать динамическое поведение системы с одной степенью свободы, состоящей из массивного тела, соединенного с опорой вязкоупругой связью. Однако благоприятным обстоятельством здесь является то, что свойства большинства материалов сравнительно мало зависят от частоты колебаний, поэтому изменение свойств при изотермических условиях можно моделировать с помощью параметров комплексного модуля  [c.145]

При малых колебаниях и достаточно малых частотах возбуждения (до 100 Гц) тело человека можно рассматривать как линейную вязкоупругую механическую систему. Это позволяет описывать динамические свойства тела с помощью частотных характеристик  [c.383]

Использование указанных частотных ха рак теристик ограничено условием линейности системы. При больших уровнях возбуждения проявляются нелинейные свойства тела человека. Графики амплитуд вынужденных колебаний, полученные при различных уровнях гармонического воздействия (рис. 5), показывают, что вязкоупругие свойства тела человека более точно могут  [c.389]

Установившиеся колебания. Предположим, что вязкоупругое тело совершает периодические колебания под действием внешних поверхностных периодических воздействий с частотой со (внешние массовые силы предполагаются равными нулю). В этом случае по истечении достаточно большого промежутка времени переходные процессь[ в системе практически затухнут и решение с достаточной степенью точности будет представлено в виде  [c.259]

Рассматриваются задачи о продольных нестационарных колебаниях вязкоупругого стержня конечной длины, удар вязко-упругого стержня о жесткую преграду и распространение волн напряжений в полубесконечном вязкоупругом стержне. В качестве модели, описывающей вязкоупругие свойства материала стержня, используется обобщенная модель стандартного линейного тела, содержащая дробные производные различных порядков. Задачи решаются методом преобразования Лапласа, при этом в отличие от традиционных численных подходов характеристическое уравнение не рационализируется, а решается непосредственно с дробными степенями. Проведено численное исследование указанных задач. Временные зависимости напряжения и контактного напряжения в стержне, соответствующие первой и второй задачам, проанализированы для различных значений реологических параметров порядков дробных производных и времени релаксации. Исследования показали, что стержень не прилипает к стенке ни при каких значениях реологических параметров. В задаче о распространении волн напряжений получены асимптотические решения вблизи волнового фронта и при малых значениях времени. Показано, что данная модель может описывать как диффузионные, так и волновые явления, протекающие в вязкоупругих материалах. Все зависит от соотношения порядков производных, стоящих слева и справа в реологическом уравнении.  [c.281]

В области механики деформируемого твердого тела. Здесь излагаются основы современной теории пластичности (обгцей, малых унругонластических деформаций и теории течения), линейной и нелинейной вязкоупругости. Отдельно рассмотрена теория ква-зистатического переменного нагружения упругопластических тел в тепловых и радиационных полях. Предлагаются постановки динамических задач теории упругости (линейные колебания, волны и колебания физически нелинейных тел вблизи резонанса).  [c.8]

Реологические модели и дифференциальные соотношения. В ранних работах по вязкоупругости за основу принимались дифференциальные соотношения типа (2.23), откуда, в частности, получаются известные модели Максвелла и Фойхта. А. Н. Герасимов (1938) дал обобщение уравнений Максвелла на трехмерный случай и получил уравнение типа (2.25) с экспоненциальным ядром. В другой работе А. И. Герасимова (1939) рассмотрен вопрос о малых колебаниях вязко-упругих мембран. А. Ю. Ишлинский (1940) рассматривал модель, которая получила название модели стандартного вязко-упругого тела, для которого связь между напряжениями и деформациями дается уравнением (5.2). Были рассмотрены продольные колебания стержня. В других работах А. Ю. Ишлинского к модели (5.2) добавлялись элементы сухого трения, изучались статистические модели, сконструированные из большого числа вязко-упругих элементов с некоторым распределением параметров. В. 1945 г. А. Ю. Ишлинский предложил обобщение уравнения (5.2) на пространственный случай.  [c.149]



Смотреть страницы где упоминается термин Колебания вязкоупругих тел : [c.566]    [c.249]    [c.390]    [c.316]    [c.533]    [c.390]    [c.544]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.130 ]



ПОИСК



Вынужденные колебания вязкоупругой прямоугольной пластинки

Вязкоупругости задачи, стационарные колебания

Вязкоупругость

Колебания вязкоупругих сред

Колебания свободные (собственные вязкоупругих

Колебания слоистых упругих и вязкоупругих конструкций

Колебания упругих тел вынужденные гармонические вязкоупругой

Некоторые другие задачи о колебании упругих и вязкоупругих слоистых конструкций

Нестационарные колебания вязкоупругого прямоугольного штампа и вязкоупругого основания

Нестационарные колебания вязкоупругого штампа — полосы, лежащей на вязкоупругом основании

Нестационарные колебания упругого и вязкоупругого слоя, ограниченного вязкоупругими пологими цилиндрическими оболочками

Нестационарные осесимметричные колебания упругого и вязкоупругого слоя, ограниченного пологими сферическими оболочками

Приближенное решение некоторых задач о колебании вязкоупругой полуплоскости

Трехслойная круглая пластина, изгиб линейно-вязкоупругий колебания, возбужденные

Уравнение амплитуды колебани вязкоупругой



© 2025 Mash-xxl.info Реклама на сайте