Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия битумно-полимерные

И с и ы т а н и е и о к р ы т и й. Покрытия из полимерных, лакокрасочных или битумных материалов в связи с некоторыми их особенностями подвергают специальным испытаниям на проницаемость, растяжимость, температуру размягчения, эластичность, адгезию и др.  [c.364]

Органические покрытия битумные, каменноугольные и полимерные неорганические стеклоэмали и цементные.  [c.62]

Типичными примерами толстослойных покрытий являются полимерные покрытия и покрытия на основе битумных мастик. Толщина таких покрытий превышает 1 мм. Битумные материалы наносят в расплавленном виде. Покрытие труб полиэтиленом (ПЭ) осуществляется экструзией или с применением клея, обеспечивающего сцепление полиэтилена со сталью, или путем наплавления порошкового полиэтилена [,2, 3]. В последнее время находит применение еще одна система толстослойного покрытия полиуретан — каменноугольный пек это покрытие обычно наносят распылением в виде двухкомпонентной смеси [4]. Основной областью применения толстослойных покрытий являются подземные и морские трубопроводы и подземные резервуары-хранилища. Все покрытия имеют общее назначение — разъединить защищаемую поверхность и коррозионную среду. Полностью разъединить компоненты, участвующие в реакции в среде, в принципе невозможно, поскольку все органические материалы покрытий, хотя и в различной степени, поглощают воду и пропускают водяной пар и кислород. Кроме того, нельзя исключить и возможность механического повреждения покрытий. Основные требования к покрытиям, которые должны обеспечивать длительную защиту от коррозии, сводятся к следующему [5, 6]  [c.146]


По приведенным в табл. 5.1 значениям [6] можно судить об очень хорошей длительной стойкости и постоянстве высоких значений сопротивления полиэтиленовых покрытий. Битумные покрытия показывают при длительных испытаниях более низкие значения г , снижающиеся с течением времени. Значения электрического сопротивления для других перечисленных полимерных покрытий еще не позволяют сделать выводов об их длительной стойкости, потому что продолжительность испытаний была слишком малой.  [c.147]

Под покрытия из полимерных лент применяются грунтовки. Битумные грунтовки изготавливаются из битума, растворенного в неэтилированном бензине Б-70 в соотношении 1 3 по объему или 1 2 по массе. В летнее время для приготовления грунтовки следует применять битум БН-5, а в зимнее — БН-4. При температуре ниже 25° С в грунтовку добавляют 3% пластификатора из  [c.55]

Конструкция битумно-резиновых и битумно-полимерных защитных покрытий нормального и усиленного типов приведена в табл. 44. Физико-механические свойства и температурные условия применения битумно-резиновых изоляционных мастик даны в табл. 45.  [c.56]

Битумно-резиновые и битумно-полимерные покрытия  [c.56]

На стальных трубопроводах, проложенных в земле на территории городов, промышленных предприятий и населенных пунктов, применяются битумно-полимерные, битумно-минеральные полимерные, этинолевые и другие покрытия, по защитной способности отвечающие весьма усиленному типу. Конструкция битумно-полимерного  [c.57]

Защитные покрытия (пленки) могут быть металлическими, оксидными, битумными, полимерными, лакокрасочными, стеклоэмалевыми, бетонными и др.  [c.238]

Показано, что западно-сибирские нефти являются благоприятным сырьем для производства битумов, в том числе специальных лаковых, применяемых для защитных мастик БПМ-1У [150, 151]. Битумы для лакокрасочной промышленности из западно-сибирских нефтей обладают более высокими защитными и адгезионно-когезионными свойствами и с успехом могут использоваться в соответствующих ПИНС. Также как в изоляционных защитных покрытиях, в ПИНС наиболее часто используют и битумно-полимерные, латексные, каучуковые, резиновые композиции [91—95].  [c.150]

Покрытия и материалы, применяемые в нашей стране для изоляции трубопроводов от коррозии, регламентируются ГОСТом 9.015-74 и СНиПом П-45-75. Согласно этим документам, покрытия делятся на два вида покрытия из полимерных липких лент и покрытия на основе битумных мастик.  [c.56]

Ив. магистральных стальных подземных газопроводах, нефтепроводах, нефтепродуктопроводах и ответвлениях от них применяют полимерные, битумно-резиновые, битумно-полимерные и другие защитные покрытия, которые в зависимости от защитной способности делят на два типа нормальные и усиленные.  [c.215]


На стальных трубопроводах, прокладываемых непосредственно в земле в пределах территории городов и дру-, гих населенных пунктов, промышленных предприятий и на подземных емкостях сжиженного газа применяют защитные покрытия, соответствующие весьма усиленному типу битумно-полимерные, битумно-минеральные, полимерные, этиленовые и др.  [c.215]

Конструкция покрытия из битумно-минеральных и битумно-полимерных мастик при общей его толщине 9 0,5 мм следующая  [c.355]

Для защиты от коррозии алюминия и его сплавов в атмосфере и почве Применяют битумные, полимерные, лакокрасочные покрытия, смазки.  [c.108]

Для отдельных типов покрытий, например полимерных, швы могут устраиваться значительно чаще. Конструктивные решения швов зависят от материала и типа покрытия. Типичным решением является устройство швов в покрытии шириной 20—30 мм с заполнением битумными мастиками. Более надежной защитой является заделка швов химически стойкими герметиками, сохраняющими эластичность и химическую стойкость. В местах стыков непроницаемого подслоя для обеспечения герметичности шва устраивают металлический компенсатор из оцинкованной или нержавеющей стали. В практике строительства чаще используются компенсаторы из полиизобутилена (рис. 47). Так как деформационные швы трудно герметизировать, их лучше устраивать по наиболее высоким точкам пола.  [c.130]

Как было указано выше, антикоррозионная техника располагает множеством неметаллических защитных покрытий — полимеризационными и конденсационными пластическими массами, материалами на основе каучука, новыми видами эластомеров, битумно-асфальтовыми пластмассами, лакокрасочными, вяжущими полимерными материалами, смолами, материалами неорганического происхождения и др. Ассортимент этих материалов непрерывно растет.  [c.57]

Для обеспечения требуемого качества покрытий из органических материалов для защиты наружной поверхности труб в последние годы был разработан ряд стандартов. В стандартах на полимерные покрытия, наносимые в заводских условиях, обычно регламентируются и методы испытания готового покрытия. В случае битумных покрытий это наблюдается в меньшей мере при включении нормали Западногерманского объединения по водопроводному и газовому делу GW6 [24] в DIN 30673 [25] по-прежнему делается упор преимущественно на испытания исходного материала для покрытия (см. также [14, 26]).  [c.161]

Чтобы обеспечить благоприятное распределение тока, на железобетонной стене в местах ввода трубопроводов необходимо предусмотреть электроизолирующее полимерное или битумное покрытие толщиной не менее 2 мм по окружности диаметром не менее 1 м вокруг оси трубопровода, доходящее до поверхности земли [10]. Такое покрытие необходимо выполнить и на железобетонных поверхностях, находящихся на расстоянии менее 4 м от защищаемых объектов, например от трубопроводов для охлаждающей воды.  [c.289]

Кабели телефонной и телеграфной связи прокладывают либо непосредственно в грунте, либо в кабельных каналах. Для сооружения кабельных каналов из бетона применяют фасонные кирпичи на цементной связке длиной 1000 мм, имеющие кабельные фидеры шириной в свету 100 мм. На внутренней поверхности кабельных фидеров предусматривается битумное покрытие. Обычно несколько фасонных кирпичей для кабельного канала укладывают соединением в линию. Места стыков между фасонными кирпичами герметизируют цементным раствором. Такие каналы не являются водонепроницаемыми, так что в кабельные фидеры могут проникать посторонние (грунтовые) воды и компоненты грунта в виде шлама. Коррозионные повреждения возникают преимущественно в этих местах. Канады обычно бывают сырыми и не обеспечивают никакой электрической изоляции по отношению к земле. Переходное сопротивление на землю у кабеля, проложенного в кабельном канале, зависит от размеров кабеля, от вида грунта и от его влажности. Для кабеля длиной 100 м это сопротивление может быть в пределах 20—500 Ом. У кабелей, проложенных в земле, соответствующее сопротивление получается примерно в 100 раз меньшим. В бетонных кабельных каналах прежде протягивали голые свинцовые кабели без покрытия, а кабели с другим материалом оболочки всегда применяли с полимерным покрытием. В настоящее время применяют преимущественно кабели со стальной гофрированной оболочкой или кабели со свинцовой оболочкой и наружным полимерным покрытием. В последнее время кабельные каналы начали сооружать и в виде пластмассовых (полимерных) труб диаметром в свету 100 мм. При водонепроницаемом склеивании такие каналы образуют сплошную трубную нитку. При этом могут получиться низкие точки, где скапливается сконденсировавшаяся влага или вода, проникшая через концы труб. Во многих случаях это уже приводило к коррозионным повреждениям свинцовых кабелей, протянутых через пластмассовые трубы. Катодная защита кабеля вслед-  [c.297]


В качестве праймеров для улучшения термостойкости пленки ПВХ-СТИЛ берут битумно-полимерную грунтовку ГТ-754, ГТ-752. Адгезионная прочность покрытий на основе ПВХСТИЛ, определенная по критерию стойкости к катодному отслаиванию, находится на уровне одного из лучших зарубежных образцов Плайкофлекс-340-20.  [c.139]

На магистральных стальных подземных газопроводах, нефте-продуктонроводах и ответвлениях от них применяются полимерные, битумные, битумно-резиновые, битумно-полимерные и другие защитные покрытия, которые в зависимости от защитной способности делятся на два тина нормальный и усиленный. Конструкция защитного покрытия нормального и усиленного типа приведена в табл. 43.  [c.55]

Контроль качества защитных покрытий стальных трубопроводов осуществляется на всех этапах трубоизОляционных и строительных работ, а также в условиях эксплуатации трубопроводов. Состав и качество изоляционных материалов, дозировка компонентов должны проверяться лабораторией строительно-монтажной организации на соответствие требованиям стандартов и другой нормативнотехнической документации. Качество битумно-полимерного, би-тумно-минерального и битумно-резинового защитных покрытий, наносимых на стальные трубы, проверяется по мере их нанесения и перед опусканием плетей в траншею. Проверкой устанавливается  [c.213]

Стеклорубероид и стеклоеойлок — рулонные материалы, получаемые путем двухстороннего нанесения битумного (битумно-резинового или битумно-полимерного) вяжущего вещества, соответственно, на стекловолокнистый холст или стекловойлок и покрытия с одной или двух сторон сплошным слоем посыпки. Сочетание биостойкой основы и пропитки с повышенными физико-механическими свойствами позволяет достичь долговечности для стеклорубероида около 30 лет.  [c.356]

Электроискровой метод основан на пробое воздушных промежутков между касающимся поверхности сухого изоляционного покрытия щупом или щеточным электродом, подключенным к одному полюсу источника высокого напряжения, и самим защищаемым объектом (например, подземным резервуаром), подключенным к другому полюсу источника высокого напряжения непосредственно или через грунт при помощи заземлителя. На основе этого метода разработан ряд моделей электроискровых дефектоскопов. Так, на рис. 8.3 приведен общий вид электроискрового дефектоскопа КР0НА-2И, серийно изготовляемого АО ИНТРОСКОП и предназначенного для контроля эпоксидных, битумных, полимерных и эмалевых покрытий трубопроводов. Этот же прибор может быть использован для контроля защитных неэлектропроводящих покрытий других изделий любой конфигурации.  [c.133]

Во ВНИИГ им. Б. Е. Веденеева на основе битума БН 70/30 разработана серия битумно-полимерных мастик битэп, изготовляемых в заводских условиях в соответствии с ТУ 401-08-515—73. Они предназначены для антикоррозионной защиты строительных конструкций, работающих в условиях переменного темпе-ратурно-влажностного режима, стен и перекрытий в помещениях с повышенным температурно-влажностным режимом, железобетонных сооружений, эксплуатируемых в условиях агрессии грунтовых вод, а также для защиты поверхностей, подвергающихся механическим воздействиям, не превышающим 0,1 МПа. Битумно-полимерные мастики нельзя наносить на влажлое основание, они непригодны в качестве покрытий, работающих на отрыв, а при механических нагрузках выше  [c.50]

Мастики, замазки, полимеррастворы (ПР) и полимербетоны (ПБ) на основе синтетических смол. В материалах на основе синтетических смол удачно сочетаются высокая защитная способность и технологичность. Получаемые покрытия обладают лучшей адгезией к различным материалам, шире диапазон их химической стойкости, они менее водо- и газопроницаемы и по сравнению с битумно-полимерными покрытиями более теплостойки. К числу их недостатков следует отнести повышенную усадку при твердении, а также дефицитность и дороговизну.  [c.51]

Представляет интерес новый рулонный материал эласто-бит, разработанный во ВНИИГ им. Б. Е. Веденеева на основе битумно-полимерных мастик битэп ( 4). Он содержит до 20% каучука и 20—30% наполнителя, отличается высоким относительным удлинением — 300% и морозостойкостью. Благодаря полимерным добавкам эластобит, по сравнению с традиционными битумно-рулонными материалами, обладает лучшими физико-химическими и физико-механическими свойствами, более долговечен и с успехом может использоваться как подслойный материал в облицовочных и футеровочных покрытиях. Эластобит удовлетворяет следующим техническим требованиям [75]  [c.64]

Битумно-полимерные мастики битэп поступают на строительную площадку в заводском изготовлении. Их наносят на сухую огрунтованную поверхность в 2 слоя толщиной 2—3 мм теми же способами, что и горячие асфальтовые мастики. В качестве грунтовки применяют битум марок БНД 40/60 или БНД 60/90, разжиженный автомобильным бензином в соотношении 30 70 [25]. Для повышения механической прочности мастичных покрытий их армируют стеклотканью.  [c.175]

Устройство фундамента показано на рис. 94. Наружная поверхность фундамента должна быть покрыта слоем теплоизоляции толщиной 30—40 мм (пенополисти-рол). Теплоизоляция должна быть защищена от влаги земли битумным покрытием, рубероидом, полимерной пленкой. Если возможно попадание дождевой воды, то перед фундаментом вырывают ров и заполняют его крупной щебенкой, а на дно кладут дренажную трубу — керамическую или пластмассовую — диаметром 50—200 мм.  [c.187]

Стальалюминиевые провода, пропитанные смазкой и покры- ыг ей снарум и, служат 25—30 лет (В промышленных и приморских районах [218]. Защитные характеристики битумных, полимерных и ла-кокрасочных покрытий существенно зависят от подготовки поверхности, технологии нанесения, методов сущки, характера коррозионной среды. Битумное покрытие толщиной  [c.108]

Локомотивная бригада может перейти в любую секцию без выхода из тепловоза через двери на задней стенке холодильной камеры и передней стенке тамбура (средней секции), и снаружи смонтированные переходные площадки с тамбурами. Все двери внутри имеют щумоизоляцию и в верхней части окно с двойным остеклением. Для щумоизоляции кузова внутренние поверхности наружных листов общивы покрыты противошумной битумной мастикой 579 ТУ5.10.1268-72 или битумно-полимерной ТУ5.10.882-72 слоем толщиной не менее 3 мм.  [c.243]


Создание и освоение цроизводотва антикоррозионной защиты в виде соответствующих современным требованиям модифицированных битумно-полимерных покрытий, в частности содержащих иншбиторы и биоциды, позволит швысить надежность и долговечность магистральных, водопроводов и нефгецроводов на 30-50  [c.122]

При катодной защите трубопроводов защитный потенциал изменяется по длине ( рис. 1.2 ). Так как в наиболее удалённых точках должен быть минимальный защитный потенциал, то на ближайшие и точки дренажа поверхности неизбежно устанавливается болм высокий потенциал. Максимальный защитный потенциал (Ез.тах) -это максимально допустимый потенциал защищаемой конструкции. При этом потенциале обеспечивается благоприятное сочетание всех параметров защиты и затруднены процессы катодной водородной деполяризации, которые могут способствовать отслаиванию защитньк покрытий и на-водороживанию металла, и, следовательно, ухудшение его несущей способности. Максимальный защитный потенциал ограничивается нормативными документами. Так, согласно ГОСТ 25812-83 максимальный поляризационный потенциал стальных сооружений ограничивается величиной минус 1,15В (по МЭС) для сооружений с битумной или полимерной плёночной изоляцией.  [c.7]

При расстояниях между электродами до 100 м и обычной измерительной частоте ПО Гц влияние частоты остается в пределах точности измерений. Двухполюсные мосты для измерения сопротивления обычно работают со звуковой частотой (800 2000 Гц) и при этом дают резко различающиеся результаты. Для определения переходного сопротивления на землю мелких деталей протял енных сооружений подходит прибор для измерения сопротивления заземления с частотой 25 кГц [31]. Однако у труб с битумным или полимерным покрытием емкостное сопротивление может оказаться меньше омического сопротивления растеканию тока с дефектных участков, которое в таком случае лучше измерять включением и выключением постоянного тока.  [c.115]

Высокое сопротивление изоляции способствует уменьшению требуемого защитного тока, увеличивает длину зоны защиты и улучшает распределение тока. Для этой цели могут быть применены покрытия, стандартизованные согласно разделу 5. В зависимости от требований при транспортировке, прокладке и нагружении в грунте могут быть выбраны механически прочные полимерные материалы (пластмассы) или же предусмотрены дополнительные защитные мероприятия типа обвертывания войлочными матами. Такие маты должны быть пористыми, чтобы пропускать защитный ток. Менее прочные битумные покрытия могут применяться при укладке трубопровода в грунт без камней. Чтобы не повредить покрытие, при засыпке рва нельзя укладывать крупные (крупнее 5 см) камни с острыми кромками. Для прокладки в каменистых грунтах рекомендуются трубы с полиэтиленовыми покрытиями. Слабым местом обычно является изоляция соединений труб и арматуры, выполняемая непосредственно на строительной площадке. Для нее в настоящее время имеется большое число механически прочных полимерных обвер-тывающих лент. Необходимо тщательно следить за получением ровного обвертываемого покрытия без промежуточных пустот и провисающих  [c.250]

В последнее время для специальных заправочных станций используют также горизонтальные цилиндрпческпе стальные резервуары емкостью 300 м1 Эти одностенные резервуары снаружи покрывают пластмассой, армированной стекловолокном (QIK), Изнутри такие резервуары имеют футеровку, стойкую к воздействию жидкого топлива. Резервуары такого типа обычно оборудуют привариваемыми или прикрепляемыми на фланцах стальными купольными колодцами типоразмеры их тоже стандартизованы. Благодаря наличию полимерного покрытия (при условии, гго и куполыи.(е коло/щы имеют такое же покрытие) требуемая плотность защитного тока не превышает нескольких микроампер на 1 кв. м. Таким образом, для резервуара емкостью 300 м с двумя купольными колодцами с общей площадью поверхности 400 м2 при "принятой плотности защитного тока 10 мкА-м требуемый защитный ток составил бы всего 4 мА, E jh-i кс купольные колодцы имеют только битумное покрытие, то защитный ток, как известно из  [c.270]

Для коммунального и промышленного электроснабжения под землей прокладывают кабели низкого напряжения 220/380 В, среднего напряжения 1—30 кВ и высоковольтные — преимущественно на ПО кВ. Для сетей низкого и среднего напряжения в настоящее время обычно используют кабели, имеющие массивные полимерные (пластмассовые) оболочки, например для низковольтных сетей — типов NYY и NAYY, которые не нуждаются в какой-либо защите от коррозии. Кабели с медным экраном и полимерным покрытием, например типов NY Y и NY WY, тоже достаточно коррозионностойкие. Опасность коррозии существует для кабелей, находивших прежде предпочтительное применение — со свинцовой оболочкой и стальной броней, обвернутых только одним слоем джута, пропитанного битумом, а также для кабелей с алюминиевой и гофрированной стальной оболочкой с полимерным покрытием, если оно повреждено. Для сетей напряжением ПО кВ используют преимущественно кабели в стальных трубах с битумным или полимерным покрытием.  [c.306]

Повысить долговечность и защитные свойства битумных покрытий можно и совмещением битума с полимерными и олигомерными веществами — полиэтиленом, полиизопропиленом, бутилкаучуком, эпоксидными смолами, силиконами. Хотя в этом случае и получаются очень хорошие материалы, этот способ пока малоприемлем ввиду дефицитности полимеров.  [c.79]

ВНИИСТом проведены исследования грунтовых условий, в которых эксплуатируются трубопроводы. В частности, изучено влияние влажности грунтов и давления их на покрытие, а также поведение новых видов изоляционных материалов, таких как полимерные материалы и стеклоэмали в условиях катодной поляризации. На действующих стальных изолированных трубопроводах, не оборудованных специальными контрольно-измерительными пунктами для измерения поляризационных потенциалов, допускается осуществлять катодную поляризацию таким образом, чтобы среднее значение разности потенциалов находилось в следующих пределах для битумной изоляции от -0.9 до -2.5 В, для полимерной пленочной изоляции от -0.9 до -3.5 В по медно-сульфатому электроду сравнения [3].  [c.17]

Оклеечная битумная гидроизоляция из гидроизола, изола, стекло-рубероида оклеечная полимерная гидроизоляция из нолиизобутиле-на эпоксидно-сланцевое или эпоксидно-каменноугольное покрытие покрытие на основе термоэласто-пласта типа 51-Г-10 горячая асфальтовая мастика полимерраст-воры на основе термореактивных смол армированное стеклотканью эпоксидное покрытие  [c.190]


Смотреть страницы где упоминается термин Покрытия битумно-полимерные : [c.204]    [c.58]    [c.32]    [c.156]    [c.122]    [c.346]    [c.122]    [c.123]    [c.123]    [c.152]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 , c.649 ]



ПОИСК



Битумные покрытия

Лак битумный

Полимерные покрытия



© 2025 Mash-xxl.info Реклама на сайте