Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агрессивные среды состав и механические свойства

В справочнике приведены основные характеристики стандартизованных, а также некоторых новых машиностроительных материалов, их состав, физико-механические свойства, а в необходимых случаях — стойкость в агрессивных средах, технологические и эксплуатационные свойства, области применения. Даны общие принципы выбора основных материалов и ссылки на более полные источники информации.  [c.2]

Детали, работающие в условиях высоких механических нагрузок, повышенных температур и агрессивных сред (например, лопатки газовых турбин из жаропрочных сталей и сплавов), основные рабочие поверхности которых в дальнейшем не обрабатываются режущим инструментом, подвергаются всесторонней комплексной проверке. В этом случае выполняют визуальный контроль и измерения ограниченных допусками размеров, а также определяют химический состав металла каждой плавки и механические свойства на специальных образцах, отлитых либо отдельно, либо с блоком отливок осуществляют радиографический, радиоскопический и акустический контроль для выявления внутренних дефектов, а также цветную дефектоскопию или люминесцентный контроль для обнаружения поверхностных, проникающих в отливку дефектов, не выявляемых визуально.  [c.244]


Ингибиторами коррозии называют вещества, введение которых в агрессивную среду тормозит процесс коррозионного разрушения и изменения механических свойств металлов и сплавов. В отличие от регуляторов среды, которые вводят в систему в относительно больших количествах, эффективные концентрации ингибиторов обычно невелики и не должны заметно изменять ни свойства среды, ни ее состав.  [c.140]

Для предохранения от коррозионного растрескивания изделия и полуфабрикаты из латуней необходимо отжигать при температуре 250—270° С, при этом в основном внутренние напряжения снимаются без заметного снижения механических свойств, в связи с чем значительно повышается стойкость данных сплавов в отношении коррозионного растрескивания. При таком отжиге, однако, оставшиеся напряжения в некоторых агрессивных средах являются еще достаточно опасными. В частности, латунные трубы, применяемые в сахарной промышленности, достаточно стойки лишь после отжига их при температуре 560° С. Состав и свойства двойных латуней приведены в табл. 4—8.  [c.166]

В связи с этим большое количество работ, выполненных за последнее время, было посвящено разработке таких технологий нанесения покрытий, которые позволяли бы получать менее чувствительную к деформации структуру керамического слоя и более стабильный, имеющий хорошие механические свойства слой металлического связующего покрытия, обладающего повышенной стойкостью в агрессивной окружающей среде. Это может быть достигнуто более жестким контролем за фазовой структурой свеженанесенного покрытия или же намеренным введением дефектов в покрытие во время его нанесения. Как было показано, фазовый состав свеженанесенного покрытия, от которого зависит работоспособность верхнего слоя, весьма чувствителен к составу и структуре исходного порошка [35], а также к изменениям параметров процесса плазменного напыления (температура подложки, расстояние от пушки до рабочего тела и т.п.). Введение дефектов в керамический слой осуществляется при строгом контроле за этими параметрами, что необходимо для получения требуемой пористости и/или желательного развития микротрещин в осаждаемом слое [36]. Определенную пользу в получении необходимой дефектной структуры приносят также некоторые технологические операции, проводимые уже после осаждения покрытия, в том числе отжиг и закалка [37].  [c.119]

Для изготовления колец и тел качения подшипников, предназначенных для эксплуатации в наиболее трудных условиях — при повышенных температурах и в агрессивных средах, применяют теплостойкие и коррозионностойкие высокоуглеродистые легированные подшипниковые стали и сплавы. Отечественные теплостойкие подшипниковые стали относятся к классу умеренно легированных подшипниковых сталей и сплавов. Химический состав основных марок теплостойких сталей приведены в табл. 20.23 и их механические свойства приведены в табл. 20.24.  [c.775]


Причиной отрицательного влияния пропиточных составов на свойства изоляции являются различия в физико-химических и физико-механических свойствах компонентов систем. Пропиточный состав, эмалевая пленка и сам проводник связаны друг с другом силами адгезии. При изменении температуры или воздействии внешних нагрузок они вынуждены деформироваться совместно, однако деформации затруднены вследствие разности теплофизических и физико-механических параметров отдельных компонентов изоляционной системы, таких как термический коэффициент линейного расширения, модуль упругости и др. Вследствие этого в изоляционных системах неизбежно возникают внутренние напряжения, которые могут привести к разрушению межвитковой изоляции и снижению ее пробивного напряжения. Нарушение механической целостности и сплошности изоляции облегчает проникновение влаги, кислорода, агрессивных сред внутрь обмотки, в результате чего интенсифицируется процесс старения материалов межвитковой изоляции.  [c.141]

Антифрикционные износостойкие покрытия на полимерной основе в настоящее время довольно широко применяются в различных отраслях техники. Особенно перспективен этот вид покрытий в тех машинах н механизмах, где детали, работающие на трение, несут небольшие нагрузки и имеют малые скорости относительного перемещения. Кроме того, эти покрытия находят применение в том случае, когда они работают не только на трение, но и подвержены действию агрессивных сред различного состава. Основой полимерных покрытий являются термореактивные или термопластичные смолы. С целью улучшения ряда характеристик применяемых смол, в том числе физико-механических, антифрикционных, износостойкости, в их состав вводят различные добавки — металлические порошки, порошки твердых смазок, жидкие вещества по типу пластификаторов и др. Физико-механические и антифрикционные свойства покрытий на основе полимерных смол изучены достаточно и описаны в технической литературе [59, 65]. В связи с этим мы рассмотрим только некоторые специфические виды покрытий на полимерной основе.  [c.91]

Высококремнистые чугуны С-15 и С-17 характеризуются высокой коррозионной стойкостью в соляной кислоте при комнатной температуре, серной кислоте и других агрессивных средах, благодаря чему они являются весьма распространенным конструкционным материалом для изготовления кислотоупорных насосов, трубопроводов, колонн и т. д. Химический состав, механические и физические свойства этих сплавов приведены в табл. 136 и 137.  [c.299]

Нередко агрессивные среды рассматриваются в проектах лишь фрагментарно (например, применительно к выбору защиты полов или стен) без учета климатологических особенностей и влажностного состояния материалов. Газовоздушные параметры (температура, влажность, состав воздуха) принимаются для всего объема помещений одинаковыми (так же, как и в рабочей зоне) не учитываются изменения теплофизических свойств конструкций в процессе эксплуатации. Наиболее сложным на стадии разработки проектной документации является учет многочисленных физико-химических, механических и других факторов, которые определяют степень коррозионной опасности для строительных конструкций зданий и сооружений, так как нормирование степени агрессивного воздействия чаще рассматривается применительно не к конструкции в целом (ферма, балка, стена и т. д.), а  [c.6]

Отливки из высококремнистого сплава — ферросилида (ГОСТ 2233-43) предназначается для эксплуатации в условиях воздействия агрессивных сред (азотной и серной ршслот, растворов щелочей, солей и т. д.). Химический состав приведен в табл. 15, а свойства в табл. 16. Механические испытания производятся лишь в случае необходимости, оговоренной в заказе. В ГОСТ 2233-43 приведены справочные данные о коррозионной стойкости ферросилида в условиях различных агрессивных сред.  [c.114]

Несмотря на отмеченные отличия от условий применения уплотнителей при наружном и внутреннем вакууме, к ним предъявляются и общие требования, связанные с вакуумостойкостью резины. Вакуум действует на резину аналогично агрессивной среде. Вследствие разрежения многие легколетучие ингредиенты, входящие в состав резины, возгоняются в вакуум (мягчите-ли, противостарители и др.). В результате этого снижаются физико-механические свойства резины, ее сопротивление старению, воздействию низких температур, стойкость к средам и т. д. За счет вакуумирования облегчается проход газов и паров жидких сред по микроканалам шероховатости уплотняемой поверхности. Это связано не только с увеличенным абсолютным перепадом давления по обе стороны уплотнителя. Во-первых, проход среды облегчается в связи с очисткой вакуумом самих микроканалов от следов смазки. Во-вторых, увеличивается подвижность молекул жидких сред, переходящих в вакууме в парообразное состояние. Далее, при вакуумировании играет роль не только контактное натекание, но начи51ает существенно влиять диффузионное натекание среды через объем уплотнителя.  [c.86]


Особую группу магнитострикционных материалов представляют ферриты [13 и др.]. Химический состав ферритов в общем виде описывается формулой МО-РсаОз (где МО — символ двухвалентного металла). Основным преимуществом ферритов по сравнению с магнитострикционными металлами является отсутствие потерь на токи Фуко. Электрическое сопротивление ферритов в 10 —10 раз больше, чем в металлах. Ферриты обладают высоким электроакустическим к. п. д. — до 87%, который сохраняется в широком диапазоне частот. Они не требуют высокого напряжения, не чувствительны к воздействию внешней среды, могут работать даже в агрессивных средах. Технология их изготовления позволяет получать необходимые формы преобразователей. Однако ферриты имеют и существенные недостатки. Амплитуда колебаний и интенсивность излучения у преобразователей, изготовленных из ферритов, ограничиваются нелинейными свойствами и низкой механической прочностью ферритов. Экспериментальные работы [13] показали, что предельная интенсивность ферритовых преобразователей составляет 3—3,5 вт/см .  [c.73]

Ко фозионно-стойкие стали для применения в солевых средах — Виды поставляемого полуфабриката 247 — Коррозионная стойкость 245 — Марки 244—245 — Механические свойства 246 — Назначение 244—245 — Режимы термообработки 246 — Технологические свойства 246 — Химический со-стпв 245 — Цены 247 Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах — Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257— 258 — Механические свойства 259 — Назначение 257—258 — Режимы термообработки 259 — Технологические свойства 261 — Химический состав 258  [c.381]

Влияние кремнеорганических добавок на физико-механические свойства бетонов и растворов, а также на физико-химические цроцессы, происходящие при их твердении, описано в работах [169, 250]. Введение в состав бетонов полиэтилгидросилоксановой жидкости в виде эмульсии при затворении обеспечивает значительное повышение морозостойкости гидротехнических бетонов и устойчивости их в агрессивных средах [37, 169 [. При добавлении в воду затворения цементных растворов метил- или этилсиликоната натрия прочность их уже в трехсуточном возрасте увеличивается на 10—30% [2501  [c.128]

Синтетические неорганические волокна. В последнее премя ловышается интерес к синтезу волокнистых силикатов и к их применению в различных отраслях промышленности и в том числе для фильтрации агрессивных сред. Разрабатывают пиро-генные и гидротермальные методы синтеза волокнистых силикатов. В состав исходной шихты вводят кварц, окислы, карбонаты, фториды или кремнефтористые соли магния, натрия, лития и железа. Синтетические асбесты благодаря постоянству состава и структуры значительно превосходят природные по механической прочности, эластичности и другим свойствам. Они рекомендуются для изготовления фильтрующих сред в химической и пищевой промышленности, а также для кондиционирования воды, растворов и для очистки воздуха и различных газов. В США неорганические волокна получают из кремнекислого алюминия (волокно файберфракс), титаната калия (волокно тайперсол), а также из окислов кремния, алюминия, титана и магния.  [c.30]

Ферросилид применяют для отливок, работающих в условиях во 5Действия азотной кислоты, серной кислоты, растворов щелочей, солей и других агрессивных оред, а антихлор — для работы в среде соляной кислоты и растворов солей. Марки и химический состав сплавов, а также механические свойства отливок из них по ГОСТ 2233—70 приведены в табл. 16.  [c.108]


Смотреть страницы где упоминается термин Агрессивные среды состав и механические свойства : [c.257]    [c.217]    [c.533]    [c.147]    [c.246]    [c.79]    [c.206]    [c.541]   
Коррозионная стойкость материалов (1975) -- [ c.89 , c.92 ]



ПОИСК



229 — Механические свойства состав

426 — Свойства и состав

Агрессивные свойства

Агрессивные среды

Агрессивные среды свойства

Агрессивные среды состав

Агрессивные среды состав и свойства

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические свойства 261 — Химический состав

Механические Состав

С агрессивная

Среды агрессивность



© 2025 Mash-xxl.info Реклама на сайте