Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия, измерение толщины медью

Радиоактивный метод. Этот метод измерения толщины покрытия основан на использовании прибора, в котором радиоактивный изотоп с р-излучением отражает атомы металла покрытия. Интенсивность отраженного потока р-излучения изменяется в зависимости от толщины покрытия и атомного числа металла покрытия, также влияющего на максимальную толщину, которая может быть измерена. Интенсивность потока отраженного излучения измеряется импульсным счетчиком, а затем толщина определяется из графика зависимости интенсивности от толщины. Графическая зависимость является линейной до определенной толщины покрытия, логарифмической на основном уровне толщины и гиперболической, когда достигается толщина насыщения. Толщина насыщения увеличивается с уменьшением атомного числа металла покрытия от 50 мкм для металла с высоким атомным числом (например, золота) до 300 мкм для металлов с низким атомным числом (таких, как медь или никель).  [c.139]


Точность измерения зависит от соотношения между атомными числами покрытия и основного металла (для успешного-проведения испытаний необходима разность атомных чисел па крайней мере не меньше 5) и толщины основного материала или присутствия тонких промежуточных покрытий разного состава. В случаях многослойных систем, где атомные числа разных слоев покрытий одинаковые (например, медЫ-никель+ -f-хром), радиоактивный метод позволяет определить только общую толщину этих металлов, не выделяя составные части.  [c.139]

Сохраняя положение датчика и последовательно используя разные электролиты в зависимости от покрытия, определяют толщину каждого слоя многослойных покрытий. Можно установить толщину покрытий кадмием, хромом, медью, свинцом, никелем, серебром, оловом и цинком, нанесенных на различные основные материалы, включая пластмассы. Точность метода более 10% при толщине покрытия от 0,2 до 50 мкм. Метод приемлем для измерения большей толщины покрытий (например, твердых хромовых покрытий, используемых в инженерных сооружениях), но в этих случаях необходимо частое пополнение электролита в элементе кроме того, могут появиться некоторые  [c.145]

Прибор дает показания средней толщины покрытия на измеряемой площади. Для настройки и установки нуля прибора требуется изделие, подобное контролируемому, но без покрытия. Прибор может быть использован для измерения толщины покрытий на отдельных мелких изделиях сложной формы (пружины, медали и т. п.).  [c.34]

На методе изменения силы притяжения магнита к ферромагнитной основе в зависимости от толщины немагнитного слоя основана работа прибора ИТП-5, предназначенного для определения толщины немагнитных покрытий (хром, цинк, медь, кадмий), нанесенных на стальные детали с диапазоном измерения 0—50 мкм.  [c.155]

Магнитный метод измерения толщины покрытия основан на уменьшении силы притяжения между магнитом и ферромагнитным материалом (сталью — основным металлом изделия), когда между ними находится немагнитная или менее магнитная среда (медь, никель, хром, цинк, кадмий, свинец и т. д.). Чем больше толщина покрытия, тем меньше сила притяжения. Притяжение магнита измеряется силой, необходимой для его отрыва от поверхности детали. Толщина слоя покрытия на испытуемой детали определяется по кривой зависимости силы отрыва магнита от покрытия. Эта зависимость устанавливается для каждого прибора по специальным эталонам покрытий с известной толщиной слоя.  [c.184]


Из приборов с постоянным магнитом широкое применение получил прибор ИТП-1. Этот портативный прибор карандашного типа предназначен для измерения толщины немагнитных гальванических покрытий, осажденных на черные металлы, — чугун, железо и сталь. Он пригоден также для измерения толщин цветных металлов, нанесенных на сталь погружением в расплавленный металл (например, на оцинкованном, луженом или освинцованном железе, на биметаллах алюминий — железо, медь — железо и др.) для измерения всех лакокрасочных покрытий на стали толщины эмали на эмалированных изделиях, пленок эпоксидных смол, фторопласта-3 и прочих пластмасс при отсутствии зазора между неметаллическим покрытием и сталью. Такой  [c.91]

Существует также метод определения толщины по величине электрической емкости. Практически же для измерения толщины оксидных пленок на алюминии пользуются только электрическими приборами типа ИДП-3 и ИДП-5, пригодными также для определения любых диэлектрических покрытий, например лаков и красок на деталях из немагнитных металлов (медь, алюминий, магний, титан и их сплавы). Техническая характеристика их приведена в табл. 76.  [c.137]

Измерения показали, что разработанный датчик отличается пониженной чувствительностью к электропроводности основы (рис. 53), ввиду того, что прибор работает на повышенной частоте (2 Мгц). Следовательно, на практике при контроле толщины неэлектропроводящих покрытий до 50 мкм на деталях, изготовленных из немагнитных металлов (медь, латунь, алюминий, бронза, дуралюмин и др.), можно пользоваться одной и той же шкалой прибора без какой-либо корректировки. Следует отметить, что в данном случае влияние электропроводности контролируемого изделия на показания прибора существенно уменьшено применением тока частотой 2 /Игц.  [c.64]

Погрешность измерения при струйно-объемном методе при толщинах покрытия более 2 мкм (цинк, кадмий и никель — до 30 мкм, медь до 50 мкм) колеблется в пределах 15 %.  [c.94]

Для измерения толщины лакокрасочных покрытий на немагнитных металлах и сплавах (алюминий, свинец, медь и др.) приходится прибегать к мето-дал разрушающего контроля, снятию пленок с подложки. В научных лабораториях применяют более сложный и точный оптический метод с помощью двойного микроскопа МИС-11.  [c.117]

При измерении электрических емкостей была дана оценка шероховатости покрытий на основе меди толщиной 15 мкм, осажденных из различных электролитов (рис. 34). Размеры частиц M0S2 составляли около  [c.106]

Действие -различных приборов для измерения толщины покрытий магнитным методом основано на изменении силы притяжения между магнитом и основнь1м металлом изделия — сталью чем больше слой покрытия, представляющий собой немагнитную или менее магнитную среду (никель, хром, медь и т. д.), тем меньше сила притяжения. Для каждого такого прибора имеются кривые изменения силы отрыва магнита от покрытия в зависимости от толщины слоя.  [c.264]

Толщина покрытия. Толщину нанесенного лакокрасочного покрытия или системы покрытий измеряют различными способами, которые используют при определении толщины покрытий как на образцах, так и непосредственно на окрашенных поверхностях изделий, особенно из металлов, не обладающих магнитными свойствами (алюминий, магний, медь и др.). Для измерения толщины лакокрасочных покрытий используют приборы ТПН-1У, ТЛКП, ИТП-1, микрометр.  [c.27]

Измерение толщины покрытия. Для определения толщины никелевого осадка Миерс -растворял его анодной обработкой в 20%-ном цианистом натрии в таких условиях, чтобы железное основание оставалось пассивным, а никель растворялся если же никель становился пассивным, то для восстановления активности временно изменяли направление тока и продолжали растворение при прежней плотности тока. После удаления всего никеля уменьшение в весе дает вес покрытия. В случае медного покрытия медь может быть переведена полисульфидом натрия в сульфидную медь и затем растворена в цианистом калии потеря в весе указывает на количество меди.  [c.814]


При определении толщины покрытий, нанесенных горячим методом, когда возможно образование под верхним слоем покрытия одного или нескольких слоев сплавов, рекомендуется применять анодное растворение с измерением потенциалов. Изменение значения потенциала указывает, что какой-то из слоев полностью растворился. Толщину отдельного слоя можно приблизительно вычислить по закону Фарадея, а толщина всего покрытия может быть определена по потере веса после растворения всего покрытия. Этот способ применялся Бриттоном, а также Фрэнсисом и Уайтом для определения толщины слоев цинка и сплавов цинка на горячеоцинкованной проволоке. Такой же принцип применили Твэйтс и Хор, изучая образование сплава, происходящее при оплавлении оловянных покрытий (стр. 589). В работе Бриттона с оцинкованной проволокой этот метод применялся для определения соответствия толщины покрытия на проволоке с поставленными требованиями. Через проволоку пропускался ток в течение времени, за которое должно раствориться покрытие требуемой толщины. После этого образец вынимался, вытирался ватой и погружался на 5 сек. в 10%-ный раствор сернокислой меди. Если толщина покрытия соответствует условиям, то на проволоке не образуется розового осадка меди, т. е. нет оголенных участков стали [91].  [c.737]

Метод отслаивания. В испытании на отслаивание тоже используется стягивающее усилие, перпендикулярное к поверхности покрытия. Этим методом производят контроль металлических покрытий на пластмассах. Испытания проводят на специально подготовленных образцах с ровной плоской поверхностью. На поверхность наносят толстослойное эластичное медное покрытие после осаждения металла химическим методом на пластмассу. Целью испытания является измерение связи между осадком металла, полученным химическим путем, и основным материалом — пластмассой, так как эта связь зависит от процессов предварительной обработки пластмассы, а также от ее физического состояния. На расстоянии 25 мм друг от друга (или некотором другом) наносят две параллельные линии. Они должны проходить сквозь электроосаждаемый слой меди (толщиной 15 мкм) и слой металла, полученный в результате химического осаждения, достигая пластмассы. Кусок полоски металла между линиями, отслоенный с помощью лезвия, вводимого между покрытием и основным материалом со стороны кромки образца, захватывается в тисках разрывной машины, а образец жестко закрепляется. Нагрузка, требуемая для отслаивания металла от пластмассы, считается величиной отслаивания . Во время испытания необходимо сохранять направление действия растягивающего усилия под углом 90° к поверхности образца. Это осуществляется с помощью соответствующих тяг в устройстве для испытаний.  [c.151]

Заземление. Для целей измерений в отдельных помещениях должно быть заземление с сопротивлением растеканию 2. . .. .. 3 Ом. Такое сопротивление обеспечивает проведение особо точных измерений. Для других аппаратов допускается увеличивать сопротивление растеканию заземления до 10 Ом. Очаг технологического заземления должен быть удален от защитного заземления на расстояние не менее 15. .. 20 м. Экранирование помещений от внешних наводок высокочастотных полей для работы с точными приборами рекомендуется выполнять листовой сталью толщиной 1,5. .. 2 мм, которая дает эффективность 82. .. 95 дБ в диапазоне мешающих частот 0,15. .. 15 МГц, или при пониженных требованиях к экранизации стальной сеткой с диаметром прутка 1 мм и шагом 2 мм (эффективность 74. ... ..87 дБ). Экранировка помещений может выполняться такл<е путем металлизации поверхностей расплавленным металлом (алЪминий, цинк, медь) с помощью распылительных электроду-говых или газопламенных аппаратов. При толщине покрытия 0,2. .. 0,3 мм достигается эффективность 90. .. 120 дБ на СВЧ,  [c.184]

Прибор КТП-1АМ предназначен для контроля толщины электролитических покрытий никелем, медью, цинком, хромом, кадмием, оловом на стальной основе, а также никелем на латуни. Действие прибора основано на методе вихревых токов. Пределы измерения О—50 мкм. Погрешность измерения 6%. Наименьший размер контролируемой поверхности 10X10 мм.  [c.213]

Метод 6 применением вихреввЕх токов позволяет измерять удельную электрическую проводимость тонких диамагнитных и парамагнитных металлических сплавов без непосредственного металлического контакта между образцом и измерительным устройством. Однако при измерении методом вихревых токов необходимо учитывать скин-эффект. Известно, что вследствие скин-эффекта значительно большая часть тока высокой частоты протекает в наружной, близкой к поверхности, части проводника. Если проводник имеет покрытие, то оно полностью или частично принимает на себя функции проводника. Толщину проводящего слоя, на которой плотность тока снижается в / раз от плотности тока на поверхности, называют глубиной проникновения. При частоте 1 мГц глубина проникновения составляет (при комнатной температуре), мкм 67 — для серебра, 70 — для меди, 77 — для золота, П6 — для родия, 203 — для платины, 208 — для хрома.  [c.633]

Для проверки рассчитанного оптимального режима проводили ди( х )узионное насыщение медных покрытий толщиной 20 — 2 мкм на стали 08кп при температурах подложки 350 п 400° С в течение 15, 30 и 60 мин. Температуру испарителя выбирали так, чтобы обеспечивалось существование сплошного слоя цинка на поверхности меди. Глубину проникновения цинка в медь определяли на поперечных шлифах по ширине зоны желтого цвета, отчетливо видимой в микроскопе МИМ-7 после травления в 25%-ном растворе NaOH. Измерения на поперечном шлифе показали, что в пределах желтой зоны микротвердость отличается от микротвердости в центральной части конденсата, где находится только 188  [c.188]


Смотреть страницы где упоминается термин Покрытия, измерение толщины медью : [c.186]    [c.180]   
Конструкционные материалы Энциклопедия (1965) -- [ c.93 ]



ПОИСК



Измерение толщин

Измерение толщины покрытий

Медиана

Медь покрытия медый

Покрытия медью

Толщина покрытия



© 2025 Mash-xxl.info Реклама на сайте