Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рейнольдса число для движения частиц относительно жидкости

Изложение в данной книге почти целиком основано на линеаризованной форме уравнений движения, которая вытекает из уравнений Навье — Стокса при отбрасывании инерционных членов в результате получаются уравнения так называемого ползущего течения, или уравнения Стокса. Такой подход равносилен допущению, что числа Рейнольдса, подсчитанные по диаметру частиц, очень малы. Во многих случаях, когда течение смеси в целом по отношению к внешним границам характеризуется большими числами Рейнольдса, все же можно говорить о малости чисел Рейнольдса для движения частиц относительно жидкости. Кроме того, инерционные эффекты менее существенны в системах, состоящих из группы частиц в ограниченной жидкой среде, нежели при движении одиночной частицы в неограниченной жидкости.  [c.9]


В этой постановке рассмотрены теплообмен и диффузия сферических частиц при их обтекании потоком несжимаемой жидкости. В зависимости от чисел Рейнольдса обтекания Рво использовались поля скоростей ползущего движения (Reo 1) или соответствующие аналитические решения, полученные с помощью сращиваемых асимптотических разложений, справедливые при Reo — 1 -т- 10. Кроме того, использовались различные численные решения и схематизации поля скоростей (тонкий пограничный слой вблизи поверхности, зона отрыва за частицей, потенциальное поле скоростей вне погранслоя и т. д.). В этой постановке определено влияние относительного обтекания на теплообмен и массообмен сферической частицы с потоком в стационарном процессе. Указанное влияние характеризуется числами Пекле  [c.262]

Д.ТЯ упрощения расчетов будет принято, что число Рейнольдса, вычисленное по относительной скорости между частицей и окружающей ее жидкостью, достаточно мало, так что сопротивление движению частицы определяется законом Стокса. Согласно [505],. уравнение движения частицы илюет вид  [c.67]

Н. С. Ерохин, А. К. Некрасов. ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ — форма течения жидкости или газа, при к-рой вследствие наличия в течении много-числ. вихрей разл. размеров жидкие частицы совершают хаотич. неустановившиеся движения по сложным траекториям (см. Турбулентность), в противоположность ламинарным течениям с гладкими квазипараллельными траекториями частиц. Т. т. наблюдаются при определ. условиях (при достаточно больших Рейнольдса числах) в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.  [c.177]

При истечении жидкости в газ, когда имеется граница раздела двух сред, на величину коэффициента расхода отверстия а тонкой стенке начинают оказывать влияние силы поверхностного натяжения, относительную величину которых оценивают с помощью критерия или числа Вебера. Силы поверхностного натяжения создают дополнительное давление внутри струи и, в то же время, изменяют траектории движения частиц жидкости, увеличивая диаметр ее сжатого сечения, а следовательно, и коэффициент сжатия. Вследствие сказанного, очевидно существование экстремума в зависимости коэффициента расхода от числа Вебера. Для исключения влияния числа Рейнольдса в качестве зависимой переменной целесообразно взять относительный коэффициент расхода отношение коэффициента расхода при истечении в газовую среду к коэффициенту расхода при n te4eHHH под уровень.  [c.110]


Метод замыкания системы уравнений для моментов (или спектральных функций) с помощью отбрасывания моментов некоторого порядка имеет определенное оправдание лишь в применении к слабой турбулентности с небольшим числом Рейнольдса, приближающейся к заключительному периоду вырождения. Но, согласно данным 15, этот период вырождения с большим трудом реализуется в лабораторных экспериментах, причем отвечающие ему движения жидкости лишь с натяжкой можно считать турбулентными в обычном смысле этого слова. Основной же интерес для теории турбулентности представляет противоположный случай развитой турбулентности с большим числом Рейнольдса, в которой турбулентное перемешивание, связанное с инерционным движением частиц жидкости, играет значительно большую роль, чем вязкое трение. В этом случае простое отбрасывание моментов определенного порядка приводит к совершенно неверным (а часто даже и бессмысленным) результатам поэтому здесь успеха можно добиться, лишь используя какие-то другие приемы замыкания системы уравнений для моментов. К настоящему времени разработан ряд тйких приемов (о некоторых из них мы еще будем говорить позже — в п. 19.6 и 29), но пока ни один из них не оказался вполне удовлетворительным (см. обсуждение этого вопроса в статье Крейчнана (1967)). Тем не менее, для того чтобы проиллюстрировать основные черты теорий, опирающихся на те или иные методы замыкания уравнений для моментов, и разъяснить характер получающихся при этом выводов, мы рассмотрим здесь сравнительно подробно наиболее старый (фактически предложенный еще в работах Миллионщикова (1941а, б)) и,.по-видимому, простейший из методов замыкания, не предполагающих, что все моменты некоторого порядка тождественно равны нулю. А именно, мы попробуем воспользоваться для замыкания уравнений относительно вторых и третьих моментов поля скорости рассматривавшейся в предыдущем параграфе гипотезой Миллионщикова об обращении в нуль семиинвариантов четвертого порядка поля скорости, позволяющей выразить четвертые моменты скорости через вторые. Предварительно, однако, мы скажем несколько слов по поводу общей гипотезы об обращении в нуль семиинвариантов скорости фиксированного порядка й- -1 4, позволяющей построить целую последовательность все  [c.248]

При этом возникают силы, стремящиеся вернуть жидкость к равновесию. При стекании пленок большое значение имеет сила, обусловленная поверхностным натяжением жидкости. Под действием восстанавливающих сил жидкие частицы стремятся вернуться к положению равновесия. Однако по инерции они будут проходить положение равновесия, вновь испытывать действие восстановительных сил и т. д. На это движение накладывается действие сил тяжести [Л. 133]. В результате на поверхности пленки, подвергшейся случайному возмущению, будут возникать волны. Волновые движения, возникающие разновременно в различных местах от случайных возмущений, налагаясь друг на друга, прив(5Нят к сложной трехмерной картине процесса. Ламинарно текущая пленка обладает неустойчивостью относительно возмущений с достаточной длиной волны (>б). При малых числах Рейнол 1Дса возникающие в слое возмущения сносятся вниз по течению. Если же число Рейнольдса пленки больше некоторого предельного Кеволн, то образуется устойчивый волновой режим.  [c.267]


Смотреть страницы где упоминается термин Рейнольдса число для движения частиц относительно жидкости : [c.158]    [c.173]    [c.62]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.9 ]



ПОИСК



Движение относительное

Жидкости Относительный вес

Относительность движения

Рейнольдс

Рейнольдса жидкость

Рейнольдса жидкость число

Рейнольдса число для частицы

УТЗ Движение частицы жидкости

Частица жидкости

Число Рейнольдса

Число Рейнольдса си. Рейнольдса число



© 2025 Mash-xxl.info Реклама на сайте