Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тантал 149, 150 *=— Механические свойств

Сплавы тантала. Механические свойства и порог хладноломкости сплавов тантала определяли на образцах, вырезанных из листа толщиной 2 мм (см. рис. 21).  [c.35]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]


Тантал, выплавленный в дуговой вакуумной печи и содержащий 0,003 % О, 0,002 % N и 0,0008 % Н, обладает следующими механическими свойствами 1)  [c.107]

Влияние- температуры на механические свойства спеченного тантала (0,02 % С, 0,013 % N, 0,0056 % О, 0,01 % Nb, 0,01 % W,  [c.107]

Ниже показано влияние примесей на механические свойства тантала при 20 °С [1]  [c.108]

При насыщении тантала азотом повышается твердость и изменяются механические свойства (табл. 40).  [c.110]

Механические свойства сплавов цирконий—молибден, цирконий—молибден—титан, цирконий—молибден—ниобий, цирконий—никель, цирконий—ниобий и тантал при 500°С  [c.489]

Механические свойства сплавов цирконий—ниобий, цирконий-кремний, цирконий—тантал, цирконий—титан и цирконий—ванадий при комнатной температуре  [c.490]

Физико-механические свойства сплавов карбид вольфрама — карбид титана — карбид тантала  [c.541]

Влияние нейтронного облучения на механические свойства тантала  [c.270]

Легирование ниобием, имеющим такие же атомные размеры, как и тантал, не вызывает изменения механических свойств. Все элементы, кроме ниобия, снижают пластические свойства, однако и при максимальной концентрации наиболее сильного упрочнителя (27 мас.% V) относительное удлинение имеет достаточно высокое значение (20 мас.%).  [c.37]

Зачастую в технических сплавах как бы смешаны химические дисперсные соединения и твердые растворы. Кристаллическая решетка у них общая. Усложнение химического состава твердого раствора, создание дисперсных включений с помощью присадок вольфрама, никеля, титана, молибдена, ниобия, тантала способствует улучшению механических свойств сплавов.  [c.40]

Данные о влиянии экспозиции на механические свойства ниобия, молибдена и тантала приведены в табл. 157. Механические свойства этих трех сплавов в результате экспозиции в морской воде не изменились.  [c.410]

При обработке деталей из ниобия и тантала и их сплавов чаш,е, чем при обработке заготовок из других тугоплавких металлов, применяют быстрорежущие сплавы. Можно сказать, что ниобий имеет механические свойства примерно такие же, как и сталь с содержанием углерода 0,15%. Скорости резания должны быть в 2,5 раза меньше, чем для такой стали, вследствие невысокой теплоемкости и большой адгезионной способности.  [c.39]

Компактная беспористая металлокерамика представляет собой монолитные металлы (спеченные металлы) или сплавы, полученные методами металлокерамики и мало отличающиеся по составу и свойствам от данных металлов и сплавов, изготовленных путем отливки и обработанных давлением. В некоторых случаях метод образования компактных металлов и сплавов из их порошков является единственным и отражает наиболее естественные для них свойства. Таким путем изготовляют спеченный вольфрам, молибден, ниобий, тантал и другие металлы и сплавы в качестве полуфабрикатов для дальнейшей переработки. В частности, такие металлы и сплавы, подвергнутые гидростатическому прессованию, обладают высокими механическими свойствами.  [c.111]


В последние годы новые области техники для своего развития требуют получения чистых металлов меди, никеля и др. Перспективными конструкционными материалами являются ниобий и тантал высокой степени чистоты. Ниобий и тантал обладают ценными физико-механическими свойствами, легко деформируются на холоде, хорошо свариваются. Такими же свойствами обладают и сплавы, полученные на их основе.  [c.109]

Механические свойства тантала  [c.42]

Механические свойства тантала и сплава тантала с присадкой 10 /о вольфрама  [c.60]

Механические свойства тантала приведены в табл. 6—15. Данные об изменении механических свойств в зависимости от способа получения металла, температуры, отжига и т. д. включены в табл. 8—15.  [c.698]

Сплавы на основе тугоплавких м таллов. К тугоплавким относят металлы, имеющие температуру плавления выше 2000 °С. По комплексу свойств и доступности для практического применения важное значение имеют вольфрам, молибден, ниобии, тантал. В табл. 84 приведены основные физические и механические свойства тугоплавких металлов.  [c.438]

Структура сплавов на основе системы W -Ti -Ta (Nb )- o практически не отличается от структуры сплавов системы W -Ti - o. Карбид тантала или ТаС(МЬС) входит в состав твердого раствора на основе карбида титана и в небольших количествах в состав твердого раствора на основе Со. Основные физико-механические свойства сплавов на основе зтой системы представлены в табл. 22 [6].  [c.58]

Тантал, выплавленный в дуговой вакуумной печи, содержит, % (мае. доля) О2 0,003 N2 0,002 Н2 0,0008 и 0,035 С. Механические свойства тантала приведены в табл. 34.  [c.150]

Тантал 149, 15Q — Механические свойства 150  [c.527]

Тантал—тяжелый металл, с плотностью равной 16,6 серебристо-серого цвета. Обладает хорошей пластичностью и высокими механическими свойствами, хорошо обрабатывается и сваривается.  [c.221]

Наглядное представление о действии изоморфных р-стабилизаторов на термическую стабильность сплава Ti—5А1—2Сг дают графики, показывающие изменение механических свойств этого сплава до и после старения (при температуре 500° С в течение 100 ч) в зависимости от содержания молибдена, ванадия, ниобия и тантала.  [c.28]

В работе [138] получены аналогичные результаты при введении ниобия и тантала в 24%-ную хромистую сталь. Отмечается, что при сварке такой стали не наблюдается столь резкого укрупнения зерна, как у хромистой стали без ниобия. Присадка ниобия и тантала повышает механические свойства хромистой стали при высоких температурах.  [c.187]

Механические свойства. Механические свойства тантала в значительной мере зависят от чистоты и состояния, т. е. от способа получения и обработки.  [c.552]

Характеристики механических свойств при 20° С тантала, полученного различными методами, приведены в табл. 144.  [c.552]

Характеристики механических свойств тантала при 20° С  [c.553]

С. Необходимо учитывать, что при каждом отжиге тантала механические свойства отожженного материала очень сильно зависят от степени вакуума в печи, в которой производится отжиг. Так, например, Гринвуд [.Я. 31], который, верояпно, производил отжиг в вакууме 10-2—1 0-3 мм рт. ст., указывает, что твердость тантала при отжиге меняется следующим образом материал, обработанный в холодном состоянии и имеющий твердость по Виккерсу около 120 становится после отжига при 1 10О° С немного мягче в противоположность этому при отжиге до 1 800° С он становится тверже (до 375 по Виккерсу),  [c.83]

В табл. 68—71 и на фиг. 54 и 56 приведены основные физические и механические свойства тантала и ниобия, среди которых следует отметить высокие температуры плавления и кинения металлов, малый коэффициент термическогс расширения и низкую работу выхода элс ктронов (ниже, чем у вольфрама и молибдена).  [c.501]

Формирование всех свойств титановых сплавов определяется главным образом фазовым составом и структурой. Например, молибден, ванадий, ниобий, тантал, называемые изоморфными 3-сга6илизаторами, с0-фаэой титана образуют непрерывный ряд твердых растворов и во всем интервале концентраций фазовый состав сплавов (в отожженном состоянии) может быть представлен лишь двумя фазами <а и (3). Подавляющее большинство других элементов (а- и (3-стабилизаторов) образуют с титаном интерметаллические соединения (как правило, бертоллидного типа). При этом даже в области твердых растворов всегда могут быть созданы условия, при которых возможно образование предвыделений этих соединений, трудно выявляемых методами структурного анализа, но оказывающих исключительно сильное влияние на физические, электрохимические и механические свойства сплавов.  [c.12]


Рис. 32. Механические свойства бинарных сплавов тантала. Испытание при комнатной температ5фе Рис. 32. Механические свойства <a href="/info/387444">бинарных сплавов</a> тантала. Испытание при комнатной температ5фе
Донцов С.Н. и др. Влияние технологических факторов на коррозионную стойкость и механические свойства сплавов ниобий-тантал. Научн. тр. Гиредмета, 1972, т. 32, с. 152-157.  [c.117]

Вследствие процессов растворения одного из компонентов и повторного выделения его при изотермических или циклических отжигах, поверхности раздела в эвтектических композициях, упрочненных монокарбидами тантала, гафния или ниобия, утрачивают свою стабильность. На рис. 22 показана микрофотография боковой поверхности нитевидного кристалла ТаС после термоциклиро-вания эвтектики Со (Сг, Ni) — ТаС в интервале 1100° С 400° С в течение 2000 циклов. Первоначально гладкие боковые поверхности усов после термоциклирования превращаются в зазубренные. Естественно, такое изменение морфологии нитевидных кристаллов в первую очередь отражается на механических свойствах.  [c.66]

Из тугоплавких металлов значительный интерес представляют молибден и его сплавы, вольфрам, хром, Колумбии и тантал. Молибден обладает хорошими механическими свойствами при высокой температуре и низким коэффициентом теплового расширения. Коэффициент трения молибдена по молибдену при температуре 480° С составляет примерно 1. С увеличением температуры он уменьшается, составляя 0,3 при температуре 649° С. Свыше 760° С коэффициент трения быстро увеличивается. Такое изменение объясняется тем, что окисная пленка МоОз образуется при температуре свыше 482° С, а при температуре более 760° С пленка МоОз разрушается, и ее смазываюш,ее действие прекращается. Антифрикционные свойства несмазанного вольфрама во многом совпадают с молибденом, однако он сильно подвержен окислению. Механические свойства хрома более низкие, чем у других тугоплавких материалов, он менее подвержен окислению, коэффициент трения его ниже, чем у вольфрама и молибдена. Из специальных сплавов используют сплавы на железной основе, которые применяют до температуры не более 540° С.  [c.204]

В отечественной машиностроительной промышленности и за рубежом широкое применение получили металлокерамические твердые сплавы. Они характеризуются высокими физико-механическими свойствами твердостью, износо- и теплостойкостью. Твердость этим сплавам придают карбиды вольфрама и титана, а вязкость — свя-зуюнщй металл кобальт. В последние годы для придания твердым сплавам большей вязкости применяют редкий элемент тантал.  [c.208]

При использовании преимуществ, обусловленных уникальными физическими и механическими свойствами рения при повышенных температурах, следует принимать во внимание, что металл сильно и быстро разрушаетсв D атмосфере кислорода, воздуха и в других окислительных средах, так как в Этом отношении он гораздо менее устойчив, чем ниобий, молибден, тантал или вольфрам [70]. ]Цеталл, легко изменяющийся в окислительной атмосфере, устойчив при повышенных температурах в атмосфере водорода и в других восстановительных и нейтральных средах, устойчив к действию соляной кислоты, не поддается коррозии при соприкосновении с морской вОдой и механически устойчив при электролитической эрозии 20].  [c.629]

Присутствие примесей, образующих растворы внедрения,— углерода, кислорода, азота и водорода — оказывает большое влияние на механические свойства металла. Поскольку присутствие этих примесей определяется главным образом способом получения компактного металла и последующей тех-Н0Л01 ией изготовления образца, подвергаемого испытанию, можно ожидать существенных изменений опубликованных значений механических свойств тантала, о чем сообщается в литературе.  [c.693]

Для изучения свойств применяли тантал, полученный тремя методами методом порошковой металлургии, или спекапием, дуговой плавкой и элек-тронно-лучевон плавкой. Обычно металлокерамический тантал содержит наибольшее количество примесей внедрения и металлических примесей. Такой металл был единственным примерно до 1955—1956 гг., когда начали получать и изучать металл дуговой плавки. Тантал, выплавленный электронно-лучевым методом, стал доступным еще позднее. Вследствие этого большая часть сведений о механических свойствах, опубликованных в литературе примерно до 1956 г., падучена для недостаточно чистого металлокерамического тантала, значительное содержание примесей в котором (даже низкое, как обычно считается для примесей) сильно сказывается на его механических свойствах. Следует при этом отметить, что это влияние в те Же время не является вредным для некоторых областей применения тантала.  [c.693]

В инструментальном производстве широкое распространение получили твердые спеченные сплавы (ГОСТ 3882-74). Они состоят из смеси порошков карбида вольфрама (основа) с массовой долей 66-97 % и кобальта (3-25 %). В зависимости от марки сплава в него добавляют такие компоненты, как карбид титана с массовой долей 3-30 % и карбид тантала (2-12 %). Физико-механические свойства сплавов 1176 2156 МПа (120-220 кгс/мм ), плотность у= 9,6 15,3 г/см , твердость 79-92 HRA. По массовой доле компонентов порошков в смеси твердые спеченные сплавы подразделяют на три группы вольфрамовые, титано-вольфрамовые и ти-тано-тантало-вольфрамовые по области применения — на сплавы для обработки материалов резанием, для оснащения горного инструмента, для бесстружковой обработки металлов, для деталей и наплавки быстро изнашивающихся деталей машин, приборов и приспособлений.  [c.334]


Прежде чем приступить к обсуждению результатов влияния титана, тантала и молибдена на прочность поликристаллов, рассмотрим имеющиеся в литературе данные по влиянию указанных элементов на механические свойства никельхромовых сплавов.  [c.438]

Упрочнение матрицы. Путем соответствуюш,его легирования могут быть разработаны эвтектические композиции, у которых матрицы упрочнены легированием твердого раствора или фазами, выделяющимися в твердом состоянии. Хотя это достигается в обоих типах сплавов, рассмотренных выше, очень интересный комбинированный подход (упрочнение матрицы в сочетании с упрочнением волокнами) был применен Бибрингом и др. 13] при исследовании сплавов, содержащих карбиды тантала. На рис. 20 показаны результаты исследования механических свойств эвтектической композиции Ni — 20% Со — 10%Сг — 3% А1 — ТаС (микроструктура которой сходна с микроструктурой сплава  [c.135]

В качестве исходных материалов при изготовлении разрывных контактов используются вольфрам, молибден, тантал, рений, серебро, медь, золото, платина и другие металлы. Однако однокомпонентные (компактные) контакты имеют ряд недостатков и не могут обеспечить многообразие противоречивых требований. Так вольфрам, характеризующийся высокой твердостью и прочностью при высоких температурах, малой склонностью к искрению, отличается высоким электросопротивлением и низкой стойкостью против окисления. Золото, платина и серебро имеют низкое элетросо-противление, но не обеспечивают требуемых механических свойств при высоких температурах.  [c.805]

Твердые сплавы и карбидостали. Твердыми сплавами (ТС) называются литые или спеченные материалы, основой которых являются карбиды тугоплавких металлов (вольфрама, титана, ванадия, тантала, ниобия и других карбидообразующих элементов). Порошковые ТС представляют собой гетерогенные керамико-металлические системы, характеризующиеся высокой износостойкостью и упругостью, высокими физико-механическими свойствами. Использование методов порошковой металлургии при получении ТС позволяет  [c.806]

Так же, как и в случае ниобия и тантала, дисилицид молибдена (MoSi2) является наиболее стойкой против окисления фазой в системе Мо—Si. Он имеет довольно высокие механические свойства — так его предел прочности кГ/мм ) при сжатии —246, при изгибе (100 час., 1100° С) —6,0, при растяжении (1300° С) —28,7 удлинение при растяжении в температурном интервале 30—1300° С — менее 0,5%.  [c.228]


Смотреть страницы где упоминается термин Тантал 149, 150 *=— Механические свойств : [c.359]    [c.729]    [c.210]   
Цветное литье Справочник (1989) -- [ c.150 ]



ПОИСК



ТАНТА

Тантал

Тантал Свойства



© 2025 Mash-xxl.info Реклама на сайте