Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакционная способность поверхности волокон

Проблемы, связанные с состоянием поверхности раздела, свойственны не только композитам с металлической матрицей. Для улучшения состояния поверхности раздела в стеклопластиках стеклянные волокна подвергают аппретированию. Известно, что оптимальное аппретирование является нелегким компромиссом между рядом требований, таких, как защита отдельных нитей от механических повреждений, хорошая связь стекла с полимером, сохранение этой связи в условиях эксплуатации, особенно в присутствии влаги. Оптимизация состояния поверхности раздела в композитных материалах с металлической матрицей требует, по-видимому, аналогичных компромиссных решений. Требования к поверхности раздела в металлических композитных материалах не менее жестки, чем для стеклопластиков. Так, уже упоминалась химическая несовместимость многих сочетаний матрица — волокно вследствие как недостаточной, так и излишней реакционной способности (в первом случае имеются в виду системы, где механическая связь компонентов не достигается из-за отсутствия соот-  [c.12]


Исследованы два способа подавления образования нежелательных фаз на поверхности раздела. Первый способ состоит в создании покрытия на волокне, а второй —в использовании сплавов, имеющих пониженную реакционную способность.  [c.127]

Для выяснения влияния адсорбции газов на поверхности борных волокон на величину адгезионной прочности в боропластиках изучалась адсорбция борными волокнами кислорода, двуокиси и окиси углерода, аммиака, азота и окиси этилена [43, 45]. Оказалось, что адсорбция в каждом случае незначительна и не влияет на предел прочности композитов при испытаниях на сдвиг. В работах [43, 45, 108] делались попытки увеличить реакционную способность борных волокон по отношению к эпоксидным смолам путем обработки волокна треххлористым бором, хлором, трифенил-арсином, азотом и аммиаком при температурах 426—1200 °С (реакционная способность оценивалась по данным о пределе прочности композита на сдвиг или изгиб). Однако такая обработка не дала желаемых результатов. В работе [39] показано, что метанол очищает и активирует поверхность борного волокна.  [c.243]

Влияние структуры и реакционной способности эпоксидных смол на прочность адгезионного соединения на поверхности раздела в композитах не исследовалось. Имеются данные, согласно которым потеря прочности углепластиков в результате старения может быть связана с изменением полимерной матрицы. И наконец, было показано, что вследствие разницы коэффициентов термического расширения волокна и смолы возникают остаточные напряжения в полимере и на поверхности раздела волокно — смола, что сказывается на прочностных свойствах углепластиков.  [c.270]

В качестве полуфабриката для диффузионной сварки можно использовать ленты из борного волокна, покрытые нитридом бора и пропитанные расплавленным алюминием. Для получения прочности композита, соответствующей правилу аддитивности, необходима надежная механическая связь на границе раздела. Выполнение этого условия обеспечивает в эксплуатации материала передачу нагрузки от матрицы к волокну. Вместе с тем компоненты композиционного материала, как правило, взаимодействуют между собой. Диффузионные процессы уменьшают прочность упрочняющей фазы и в большинстве случаев приводят к образованию интерметаллидной прослойки в контакте волокна с матрицей. При достижении ширины интерметаллидной зоны 0,5—2,0 мкм композит перестает существовать. Под нагрузкой матрица не передает напряжение на волокно, идет разрушение интерметаллидов, образование и развитие трещин в волокне. Образование твердых растворов еще не приводит к коренному ухудшению свойств, С целью повышения жаропрочности и срока службы композиционных материалов на волокна наносят барьерные диффузионные покрытия. Покрытия могут исключать или значительно замедлять процессы взаимодействия материалов волокна и матрицы. Метод нанесения покрытия должен обеспечивать хорошую связь с волок-но 1, равномерную толщину покрытия и исключать пористость последнего. Другим способом подавления образования нежелательных фаз на поверхности раздела является использование в качестве матрицы сплавов, имеющих пониженную реакционную способность с упрочняющим материалом. С термодинамических позиций необходимо добиваться минимальной разности химических потенциалов компонентов композита.  [c.214]


Используя метод газовой хроматографии, Брукс и Скола [19] получили интересные данные о реакционной способности поверхности высокомодульных графитовых волокон. Критерием реакционной способности поверхности волокна являлась степень адсорбции паров органических веществ. Измеряя время, необходимое для прохождения паров через хроматографическую колонку, заполненную графитовыми волокнами (служившими субстратом), Брукс и Скола определяли коэффициент адсорбции, или реакционную способность поверхности волокна. Данные, приведенные в табл. 3 и 4, показывают, что при обработке поверхности волокон азотной кислотой степень адсорбции паров п-декана, га-октилами-на и изомасляной кислоты повышается. Реакционная способность графитовой пряжи ТЬогпе1-25 по отношению к воде, толуолу и пиридину значительно возрастает после обработки ее в атмосфере водорода при 1200 °С (табл. 4). По эффективности методы обработки поверхности графитового волокна ТЬогпе1-25 можно расположить в следующей последовательности обработка в атмосфере водорода при 1200°С, обработка в атмосфере аргона при 1200°С и вакуумирование при 1200°С.  [c.244]

Химический состав. Свободная энергия поверхности волокон зависит от ее химического состава и структурных особенностей. В свою очередь свободная энергия поверхности влияет на смачиваемость и реакционную способность поверхности волокон, т. е. свойства, которые проявляются при обработке поверхности, образовании химической связи между волокном и матрицей и при взаимодействии с окружающей средой (Ог, НгО, органические загрязнители и т. п.). В табл. 2 приведены химические составы волокон в объеме и на поверхности за исключением стеклянного волокна, эти составы неидентичны. Следует отметить, что на поверхности  [c.235]

Сравнение величины удельной повер5 н0сти волокна со сдвиговой прочностью композитов, армированных одинаково обработанными графитовыми волокнами, показывает, что обработка водородом не Приводит к Понижению прочности на сдвиг (табл. 22), что,противоречит данным Херрика, [48]. Полагают, что повышение адгезионной связи на поверхности раздела объясняется высокой реакционной способностью поверхности волокон. Очевидно, что как увеличение удельной поверхности, так и повышение ее реакционной способности приводят к росту сдвиговой прочности композитов, однако количественное соотношение получить трудно.  [c.268]

На рис. 7.1 показана схема технологического процесса производства металлов, армированных волокнами. Наиболее важные зтапы процесса выделены прямоугольниками. По мере надобности для улучшения смачиваемости волокон металлом и адгезии с ним, а также для регулирования реакционной способности поверхности волокон на них наносят покрытие или осуществляют другую предварительную обработку волокон. Затем формируют полуфабрикаты или так называемые исходные элементы металлокомпозитов. Полученные полуфабрикаты разрезают в соответствии с требуемыми размером и формой, складывают, ориентируя их в нужном для данной конструкции направлении, и затем осуществляют формование. После этого проводят окончательную обработку изделия — склеивание отдельных частей, механическую обработку и т. д.  [c.241]

I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]


Первоначально при выборе матрицы и волокна для всех систем предполагали использовать те же основные принципы, что и для модельных систем. Джех и др. [22] показали справедливость правила смеси для композитов как с непрерывными, так и с короткими волокнами, избрав для этого систему медь — волокно. Медь и вольфрам, по существу, взаимно не растворимы и не взаимодействуют химически соответственно они не образуют соединений. Таким же образом Саттон и др. [38] на модельной системе серебро — усы сапфира убедительно продемонстрировали эффект упрочнения нитевидными кристаллами. Степень взаимодействия между серебром и усами сапфира даже меньше, чем между медью и вольфрамом, поскольку расплавленное серебро не смачивает сапфир. Для улучшения связи с расплавленным серебром те же авторы напыляли на поверхность сапфира никель. Однако связь между никелем и сапфиром была, вероятно, чисто механической, а на поверхности раздела никель — сапфир твердый раствор не образовывался. Поэтому не удивительно, что Хиббард [21] в обзоре, представленном в качестве вводного доклада на конференции 1964 г. Американского общества металлов, посвященной волокнистым композитным материалам, счел необходимым заключить Для взаимной смачиваемости матрицы и волокна необходимо, чтобы их взаимная растворимость и реакционная способность были малы или вообще отсутствовали . Это условие, как правило, реализуется для определенного типа композитных материалов, а именно, ориентированных эвтектик. Во многих эвтекти-ках предел растворимости несколько изменяется с температурой, что, вообще говоря, является причиной нестабильности, хотя в известной степени и компенсируется особым кристаллографическим соотношением фаз. Однако в большинстве практически важных случаев это условие не выполняется. После конференции 1964 г. основные успехи были достигнуты в области управления состоянием поверхности раздела между упрочнителем и матрицей. Ни серебро, ни медь не являются перспективными конструкционными материалами. Что же касается реакций между практически важными матрицами и соответствующими упрочнителями, то они очень сложны и могут приводить к самым разнообразным типам поверхностей раздела.  [c.13]

Усиление связи особенно важно для композитов, упрочненных AI2O3. Этот О кисел плохо смачивается многими металлами, за исключением металлов с очень высокой реакционной способностью, например циркония. Но в последнем случае волокно может оказаться поврежденным. Связь в композите должна быть достаточно прочной, чтобы нагрузка могла передаваться от волокна к волокну. Это особенно важно в случае, когда упрочнителем служат короткие усы. Следовательно, должна быть оптимальная степень химического взаимодействия, так как реакция, с одной стороны, увеличивает силу связи, а с другой — приводит к уменьшению прочности волокон или усов из-за разъедания их поверхности. Этот вопрос обсуждался Саттоном [44] применительно к модель-  [c.126]

Повышение поверхностной энергии волокна, по-видимому, связано с наличием на его поверхности кислородсодержащих групп, о чем свидетельствуют кислая реакция поверхности и увеличение на ней количества атомов углерода, которые, вероятно, соединяются с кислородом воздуха, образуя группы с высокой реакционной способностью. Кроме того, Форест [35] показал, что механические свойства высокопрочных углепластиков при высокой температуре ухудшаются под воздействием внешней среды в течение нескольких месяцев. Согласно результатам исследований Бонка и Титселя [18], прочность стеклопластиков при комнатной температуре уменьшается вследствие старения в теплой влажной атмосфере. Влияние старения на прочность волокнистых композитов 1То 1р<)бн6 рассматривается в разд. III.  [c.266]


Смотреть страницы где упоминается термин Реакционная способность поверхности волокон : [c.26]    [c.269]    [c.270]    [c.282]   
Поверхности раздела в полимерных композитах Том 6 (1978) -- [ c.239 , c.249 ]



ПОИСК



Волокна

Реакционная способность



© 2025 Mash-xxl.info Реклама на сайте