Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разряд (физика)

ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ В ДУГОВОМ РАЗРЯДЕ  [c.31]

Открытие электромагнитных волн. Электромагнитные волны были впервые экспериментально обнаружены немецким физиком Генрихом Герцем (1857—1894) в 1887 г. В его опытах ускоренное движение электрических зарядов возбуждалось в двух металлических стержнях с шарами на концах. При сообщении шарам достаточно больших разноименных зарядов между ними происходил электрический разряд. В результате шары перезаряжались, между ними вновь проскакивала искра и т. д.— процесс повторялся многократно, т. е. возникали электрические колебания.  [c.248]


При малых токах магнитное давление невелико, но при токах в сотни тысяч и миллионы ампер давление становится столь большим, что разряд полностью отрывается от стенок и плазма оказывается хорошо изолированной от стенок. Большое значение в решении этих вопросов имели работы советских физиков А. Д. Сахарова и И. Е. Тамма.  [c.330]

Понимание физико-химической природы коррозионного разрушения наиболее важно в случае роста трещин при низких значениях коэффициента интенсивности напряжений, кинетика которых определяет долговечность изделий с трещиной. Здесь доминирующим является либо водородное охрупчивание, либо локальное анодное растворение. Механизм водородного охрупчивания (см. 41) характеризуется тем, что независимо от состава среды и приложенного потенциала в вершине трещины вследствие гидролиза продуктов коррозии устанавливаются всегда такие значения pH и потенциала, при которых термодинамически воз-моя ен проце.сс разряда ионов водорода  [c.344]

Введение в физику газового разряда/Под ред. В.В. Пластилина. Иркутск Иркутский Государственный университет, 1972.  [c.118]

Слово ингибитор в буквальном переводе означает замедлитель . Сейчас под ингибитором коррозии понимают вещество, небольшое количество которого, введенное в коррозионную среду, тормозит процесс коррозии металла и при этом позволяет сохранить неизменными его физико-механические свойства. До недавнего времени под ингибиторами коррозии понимали значительно более широкую группу веществ для приобретения почетного титула ингибитора веществу достаточно было. лишь тормозить процесс химического разрушения металла в агрессивной среде. Однако детальными исследованиями было обнаружено, что способность замедлять скорость химической реакции между металлом и агрессором — есть необходимое, но еще недостаточное для предотвращения разрушения металла свойство. Нередко при отсутствии видимого химического разрушения металла под действием агрессивной среды происходит нарушение его структуры, что ведет к потере прочности. Поэтому теперь, чтобы вещество попало в разряд ингибиторов, оно должно обладать именно такой совокупностью свойств, которая дана выше в его определении.  [c.62]

Исключительно важное место, которое занимает температура в современной физике и технике, определяя в макроскопической системе (т.е. системе, содержащей большое число молекул и других частиц) большинство ее свойств и протекающих в ней явлений (плотность, электропроводность, скорости химических реакций, фазовые превращения и т.д.), делает целесообразным выделение температуры в разряд величин с собственной размерностью единиц и соответственно включение единицы температуры в число основных. Обозначение размерности температуры 0.  [c.189]


Физика канала разряда и напряженное состояние твердых тел при электроимпульсном разрушении  [c.42]

Одним из ключевых вопросов является сохранность включений при разрушении неоднородных материалов импульсными нагрузками. На степень сохранности включений влияют их физико-механические свойства (размер, акустические характеристики, прочностные характеристики), параметры нагружения (давление на фронте волны сжатия, длина волны), геометрическое расположение от канала разряда, характер срастания с матрицей, физико-механические свойства матрицы. Экспериментальные исследования сохранности включений на модельных материалах и рудах проводились при различных режимах энерговыделения в канале разряда при электрическом пробое неоднородных тел.  [c.148]

Изучение физико-химических процессов в системе вода-минерал в условиях электроимпульсного измельчения показало (раздел 5.1), что минералы подвергаются термическому воздействию в зоне канала разряда и окислительным процессам в объеме пульпы. Поэтому, несмотря на высокую степень раскрытия минералов, даже частичное изменение их поверхностных свойств может влиять на показатели обогащения руд, а также на реагентные режимы и схемы флотации.  [c.218]

Конечно, нарисованная нами картина сильно упрощена. Еще не изучено множество тончайших физико-химических явлений, сопровождающих работу МГД-установ-ки. И ученые продолжают вести исследования. На опытной установке, о которой мы уже говорили, имеются два канала — большой и малый. Пока на большом канале энергетики изучают взаимодействие плазмы с магнитным полем в каналах и генерирование больших электрических мощностей, на малом химики исследуют характеристики электрического разряда, испытывают материалы, анализируют состав плазмы. Химические и энергетические исследования опять-таки идут параллельно, тесно переплетаясь.  [c.120]

Содержание лекций первой и второй мы должны отнести к первому разряду все здесь изложенное остается в полной силе. Я думаю, что эти две лекции могут служить введением в статистическую физику и в ее теперешнем виде. Действительно, что тут изменилось  [c.13]

Раз/ он, разрушение турбины 424 Размеры на чертежах 74 Разрывы противопожарные 419 Разряд (физика) 212 Ранг матрицы 96 Распределение Беркулли 114  [c.449]

Электрогазодинамические турбулентные течения коронный разряд физико-химические, конденсационные и электрокинетические эффекты в электрическом поле бесконтактные электрические методы диагностики двигателей и разрушения материалов.  [c.10]

Сварка алюминия и его сплавов (АМгб, Д80 и т. д.) затруднена наличием оксидных пленок АЬОз с температурой плавления около 2300 К. Оксиды алюминия способствуют образованию пор в металле шва и снижают стабильность горения дугового разряда при сварке вольфрамовым электродом на переменном токе. Кратко отметим физико-химические особенности этих процессов при сварке и те мероприятия, которые необходимо осуществить в целях предотвращения их отрицательного влияния на качество сварки.  [c.387]

В этот период в СССР, США, Англии проводятся крупные исследования в области управляемых термоядерных реакций синтеза легких атомных ядер. В частности, советскими физиками под руководством Л. А. Арцимовича и М. А. Леонтовича проводились работы по созданию контролируемой термоядерной реакции синтеза в мощном газовом разряде. При этом встретился ряд серьезных трудностей, и проблема остается пока нерешенной.  [c.14]

Физиками Советского Союза (под руководством академиков Л. А. Арцимовича и М. А. Леонтовича) для разогрева плазмы использовались мощные импульсные электрические разряды, в которых максимальное значение тока достигало I — 10 —2-10 а. Проводились импульсные электрические разряды в водороде, дейтериево-тритиевой смеси и других газах.  [c.329]

Замечание. Сформулированные выше предположения а), б), в) являются идеализацией замена этих гипотез другими, точнее отражающими физику явлений, в настоящее время используется как одна из возможностей построения новых теорий в механике сплошной среды. Например, в так называемых нелокальных теориях сплошной среды предполагается, что кроме действия соприкосновения существует действие массовых сил со стороны объема О на объем Йх. Широкое распространение получили моментные теории, в которых предположение б) дополняется гипотезой о том, что действие объема Qj на Qi характеризуется распределенными по поверхности моментами. В этих теориях в разряд внешних нагрузок включаются дополнительно распределенные по поверхности 2 и по объему Q моментные воздействия (В качестве примера распределенных объемных моментных воздействий можно привести воздействие внешнего магнитного поля на частицы спл0Н]Н0Й среды.)  [c.19]


Объединение электричества и магнетизма. Уже в 1801 г. было установлено, что при прохождении электрического тока через застворы солей на электродах происходит выделение вещества рис. 14). Это явление было названо электролизом, и его исследование сыграло очень важную роль в установлении дискретной природы электричества. Изучая явления газового разряда, русский ученый В. В. Петров в 1802 г. открывает электрическую дугу. В 1820 г. датский физик X. Эрстед обнаружил, что электричество и магнетизм связаны друг с другом. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенного вблизи проводника. Впервые два до сих пор изучавшихся раздельно физических явления связываются друг с другом. Француз  [c.96]

Наряду с обычными искровыми камерами в физике высоких энергий широко применяются стримерные и широкозазорные искровые камеры. Обе камеры по своей конструкции напоминают плоский конденсатор с расстоянием между электродами порядка десятков сантиметров. Различаются камеры главным образом длительностью высоковольтного импульса. В широкозазорной искровой камере искровой разряд происходит вдоль трека ионизируюш,ей частицы (рис. 9.24). Это замечательное свойство искрового разряда имеет место, однако, в том случае, если направление движения частицы составляет с направлением электрического поля угол не более 40—50°. При больших углах происходят множественные искровые разряды из точек трека на электроды, что не позволяет получить полную информацию о траектории.  [c.514]

Принцип работы вакуумно-плазменной установки поясняется схемой, представленной на рис. 8.9. Поток ионов металла формируется из плазмы электродугового разряда с холодным катодом. К катоду прикладывается отрицательный потенциал. Под действием приложенного напряжения ускоренный плазменный поток направляется на подложку, где происходят физико-химические процессы конденсации ионов и нейтральных атомов и образование поверхностных слоев. При напылении осуществляется подача газа в вакуумную камеру, что приводит к плазмохимическим реакциям с получением нитридных, карбидных, кар-бонитридных покрытий, а также покрытий на основе других соединений. Выбор реагента газовой среды определяется задачей получения покрытия требуемого состава. Некоторые характеристики соединений, используемых в качестве нап[.1ляемых покрытий, приведены в табл. 8,1.  [c.249]

Для придания необходимых физико-механических свойств в оксидную пленку могут вводиться находящиеся в электролите нерастворимые в воде в этих условиях металлы, а также мелкодисперсные тугоплавкие соединения (карбиды, бориды, нитриды) и окислы за счет электрофоретической доставки их на анод. Образование пленок происходит в локальных объемах порядка 10 см при температуре пробойного канала 2000 К и скорости охлаждения 10 - 10 градус/с. По такому принципу формируются керамические покрытия, применяемые для повышения коррозионной и термической стойкости алюминиевых деталей. Керамические покрытия пол чают из водных растворов силикатов щелочных металлов, например из 3-4-модульного силиката натрия (концентрация 0,1-0,2 М), они представляют собой шпинели AlSiOj, сформированные при анодировании в режиме искрового разряда (напряжение 350 В). Дегидратация и спекание силикатов на аноде происходят в результате искрового пробоя окисного слоя, образующегося при анодировании алюминия. При электролизе на аноде происходит разряд гидроксил-ионов I. силикатных мицелл, а также образуются окислы  [c.124]

После Г. Герца ультракороткие волны в течение долгого времени привлекали внимание лишь одних физиков. В частности, физики конца прошлого столетия тщетно пытались установить непрерывность шкалы электромагнитных колебаний, стремясь получить наиболее короткие волны радиотехническими методами и наиболее длинные волны с помощью оптических источников. Но тогда этого сделать им не удалось. Лишь в 1923 г. А. А. Глаголева-Аркадьева, поместив металлические вибраторы в вязкое масло и возбуждая их электрическими разрядами, добилась получения волн длиной от нескольких сантиметров до 0,080 мм. Этот источник колебаний получил название массового излучателя. Немного позже М. А. Левитская, применяя вибраторы, введенные в парафин, получила волны до 0,030 мм. Обнаружение колебаний в обоих случаях производилось теплоиндикаторами. Для своего времени результаты этих работ были значительным научным достижением, но мало повлияли на развитие техники (колебания получались затухающими, притом ничтожно малой мощности).  [c.340]

Экспериментальные исследования направленности развития трещин в неоднородных образцах были проведены на модельных прозрачных материалах /101/, где в качестве матрицы использовалось специально выплавленное стекло марки С-114, а в качестве включений применялись мономинералы граната, сильвина, кальцита, обладающие различными физико-механическими свойствами. Для анализа взаимодействия волны нагружения с неоднородностью использовалась скоростная фоторазвертка в поляризованном свете. Концентрация трещин оценивалась в единичном секторе на различных радиусах от оси канала разряда. Оценка концентрации трещин вблизи неоднородностей проводилась в секторах, представленных на рис.3.9. Возникновение повышенных напряжений в характерных точках границы включение-матрица подтверждается съемкой в поляризованном свете. Причем зона этих напряжений возникает значительно раньше, чем к рассматриваемой зоне подходит магистральная трещина разрушения, и по размеру может превышать размер включения.  [c.141]

Результаты флотации в замкнутом цикле представлены в табл.5.8. Извлечение флюорита в концентрат из пробы руды, измельченной электроимпульсным способом, примерно на 10% выше, чем для пробы, измельченной механическим способом. Однако применение электроимпульсного измельчения для подготовки флюритовой руды к обогащению приводит к снижению качества концентрата, в частности, за счет разубоживания его кальцитом, извлечение которого в концентрат достигает 56-64% против 5.8% при механическом измельчении. Это явление может быть объяснено физико-химическими процессами, инициируемыми в пульпе электрическими разрядами. Решающее значение в этих условиях приобретает разложение флюорита под действием электрических разрядов, накопление ионов фтора в пульпе, сорбция их на поверхности кальцита.  [c.225]


А. Энгель, М. Штенбек. Физика и техника электрического разряда в газах,  [c.149]

В Институте металловедения и физики металлов ЦНИИЧМ были разработаны схемы и конструкции нескольких уровнемеров. Существенное упрощение схем этих уровнемеров и их удешевление достигнуто за счет использования газовых счетчиков в режиме среднего тока (1, 21. Эксперименты показывают, что при напряжении па счетчике, лежащем в области плато счетной характеристики, при загрузке, не превышающей нескольких сот разрядов в секунду, с достаточной точностью справедлива зависимость  [c.247]

Идея использования электрической энергии для освещения появилась еще у первых исследователей гальв нического электричества. В 1801 г. Л. Яг. Тенар, пропуская через платиновую проволоку электр ическгш ток, довел ее до белого накала. В 1802 г. русский физик В. В. Петров получив впервые электрическую дугу, заметил, что ею может быть освещен темный покой . Тогда же он наблюдал электрический разряд в вакууме, сопровождавшийся свечением [17]. Несколько лет спустя английский ученый Г. Дэви также высказывал мысль о возможности освещения электрической дугой. Таким образом, в экспериментальных работах начала XIX в. уже были выявлены три принципиально разные возможности электрического освещения, реализованные позднее в лампах накаливания, дуговых и газоразрядных осветительных приборах, однако до практического их освоения было тогда далеко.  [c.53]

Одновременно с сооружением первых электрических установок возникла проблема борьбы с перенапряжениями. Реальную опасность представляли перенапряжения, индуктируемые в воздушных проводах при близких грозовых разрядах. Исторически первыми средствами заш иты от атмосферного электричества были приспособления, заимствованные-из практики грозозащиты зданий и телеграфных линий связи заземленные тросы, стержневые молниеотводы и снабженные плавкими вставками телеграфные громоотводы, являющиеся прототипом разрядников. В 90-е-годы появилось много видов грозозащитных аппаратов, основанных на различных принципах действия водоструйные заземлители, постепенно-снижавшие перенапряжения электростатического происхождения разрядники с искровым промежутком и принудительным гашением дуги, катушки самоиндукции, предложенные английским физиком О. Лоджем в. качестве фильтров для импульсных токов молнии и др. При конструировании разрядников наиболее сложная задача заключалась в надежном гашении дуги сопровождающего тока, величина которого стремительно росла вместе с повышением мощностей электрических станций. Много изобретательности и неудачных попыток ученых и инженеров различных стран было связано с созданием разрядников. В 1891 г. И. Томсон предложил конструкцию с многократным разрывом дуги — принцип, нашедший полное признание лишь в 20—30-е годы XX в. при одновременном использовании в разрядниках токоограничивающих сопротивлений с вентильными свойствами. Начиная с 1896 г. самым распространенным видом разрядника становится роговой громоотвод, предложенный немецким электротехником Э. Ольшлегером. К 1900 г. он завоевал почти полную монополию в сетях напряжением до 10 кВ. Благодаря многочисленным усовершенствованиям роговых разрядников этот тин грозозащиты надолго удержался в европейских сетях напряжением до 50—60 кВ [31]. Америка пошла по-другому пути. Начиная с 1907 г. там распространились алюминиевые разрядники, отвечающие требованиям работы сетей напряжением 100— 150 кВ. Разрядник не обладал безупречными характеристиками и надежностью действия и явился лишь временной защитной мерой (до начала 20-х годов) [32].  [c.79]

Опыт эксплуатации существующих электроимпульсных (электрогидравлических и магнитно-импульсных) установок показал наиболее эффективное их использование в индивидуальном и мелкосерийном производстве, когда имеют место большая номенклатура и мелкие серии изготовления деталей. Поэтому не вызывает сомнений, что создание установок, позволяющих одновременно выполнить ряд технологических операций листовой штамповки с использованием энергии электрического разряда в жидкости и импульсного магнитного поля и имеющих один источник питания (генератор импульсных токов), значительно расширит область применения их в промышленности. Такие установки (ЭМОМ-25 и ЭМОМ-50) созданы в Физико-техническом институте АН БССР. Их отличительными особенностями являются  [c.260]

ОПТИЧЕСКИЕ РАЗРЯДЫ — газоразрядные явления, аналогичные электрическим разрядам в газе, возникающие в воздухе или др. газе под действием мощных световых (лазерных) полей. До изобретения лазеров изучались и использовались газовые разряды в полях более низких частот, чем оптические в пост, электрич. поле, в ВЧ-, в СВЧ-полях. Лазерная техника открыла физике газового разряда оптич. диапазон. Различают два осн. типа О, р. 1) л а э е р н а я искра — оптич. пробой газа, т. е. бурное нарастание ионизации ранее не ионизированного газа 2) непрерывный О. р.— поддержание в газе уже имеющегося ионизов, состояния под действием светового излучения.  [c.448]


Смотреть страницы где упоминается термин Разряд (физика) : [c.609]    [c.401]    [c.43]    [c.51]    [c.245]    [c.216]    [c.218]    [c.320]    [c.540]    [c.5]    [c.294]    [c.385]    [c.315]    [c.483]    [c.310]    [c.599]    [c.355]   
Теплоэнергетика и теплотехника Общие вопросы (1987) -- [ c.212 ]



ПОИСК



Изменение физико-химических свойств полимерных пленок под действием разрядов

Физика канала разряда и напряженное состояние твердых тел при электроимпульсном разрушении

Физико-химические процессы в дуговом разряде

Физико-химические процессы в плазме дугового разряда



© 2025 Mash-xxl.info Реклама на сайте