Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкие тела, физические параметры

Жесткость, перевод градусов 12 Жидкие тела, физические параметры 25  [c.356]

Из повседневного опыта каждый знает, что бывают тела горячие и холодные. При контакте двух тел, из которых одно мы воспринимаем как горячее, а другое — как холодное, происходят изменения физических параметров как первого, так и второго тела. Например, твердые и жидкие тела обычно при нагревании расширяются. Через некоторое время после установления контакта между телами изменения макроскопических параметров тел прекращаются. Такое состояние тел называется тепловым равновесием. Физический параметр, одинаковый во всех частях системы тел, находящихся в состоянии теплового равновесия, называется температурой тела. Если при контакте двух тел никакие их физические параметры, например объем, давление, не изменяются, то между телами нет теплопередачи и температура тел одинакова.  [c.76]


Таблицы физических параметров газов, воды, водяного пара, жидких и твердых тел  [c.19]

Статическая неуравновешенность 298 Сыпучие тела, насыпной вес 2в Тела жидкие, физические параметры 25  [c.358]

Физические параметры жидких тел  [c.505]

Исходным пунктом для введения понятия температуры является весьма субъективный и расплывчатый термин — степень нагретости тела. Мы можем придать ему, однако, более объективный смысл, пользуясь тем, что существует целый ряд легко измеряемых физических параметров, зависящих от степени нагретости. Примерами таких параметров могут служить длина столбика жидкой ртути в стеклянной трубке, давление газа в сосуде с неизменным объемом, сопротивление проводника, излучательная способность накаленного тела и т. д. Измерение любого такого параметра может служить основой для создания эмпирического термометра. При этом шкала измерения условной или эмпирической температуры может быть выбрана произвольно. Например, при пользовании ртутным термометром мы можем назвать условной температурой длину столбика ртути, измеренную в любых единицах, или любую монотонно возрастающую функцию этой длины. Заметим также, что каждый эмпирический термометр имеет ограниченную (хотя бы с одной стороны) область пригодности. Так, нижняя граница пригодности ртутного термометра определяется точкой затвердевания ртути, нижняя граница пригодности газового термометра — точкой конденсации газа, верхняя граница применимости термометра сопротивления — точкой плавления (или кипения) металла и т. д. Благодаря тому, что эти области пригодности частично перекрываются, мы можем, выбрав за основу какой-то один эмпирический термометр, определить условную температуру по некоторой произвольной шкале в весьма широких пределах.  [c.15]

Как уже отмечалось в томе 1, гл. 1, 6, п. к) в разделе, посвященном термодинамическому описанию критических явлений, основой всего подхода является интуитивно улавливаемая общность критических явлений (мы здесь включаем в них и Л-переходы), происходящих в системах, внешне совершенно не похожих друг на друга. С одной стороны, это неупорядоченные системы (критические явления в системах жидкость-газ, А-переход в жидком Не , фазовые переходы в моделях с пространственно размазанным спиновым моментом и т.д.), с другой — дискретные системы, моделирующие явления в твердых телах (магнетики различных типов, сплавы, модели решетчатых газов, рассматривающиеся как мостик для перехода к более реалистичным газ-жидкостным системам, и т. п.). Доверяя этой интуиции, мы рассматриваем, если это по каким-либо причинам оказывается удобным, одни вопросы с точки зрения непрерывных систем, другие — с точки зрения дискретных, полагая, что результаты такого рассмотрения относятся к тем и другим. Но эта универсальность подхода не есть символ веры, ей находятся и физические основания в области 9 вс радиус корреляции, являющийся характерной масштабной единицей длины в рассматриваемых условиях, значительно превышает по величине как среднее расстояние между частицами (в твердых телах — постоянную решетки) Л, > о = /vJn, так и радиус взаимодействия R Ro, поэтому общий характер поведения систем в этой области нечувствителен к деталям потенциалов взаимодействия частиц друг с другом Ф(г,у) или /(гу) = I i, j) (напомним, что сами значения критических параметров непосредственно определяются через это взаимодействие, как это мы видели на примере газа Ван дер Ваальса и ферромагнетика Изинга).  [c.360]


Для современной механики характерно расширение ее физической базы, более полный учет всех свойств реальных тел — твердых, жидких и газообразных, которые изучает механика. Эта же тенденция определяет современное развитие сопротивления материалов. Те относительно простые схемы, которые полагались в основу расчетов несколько десятков лет тому назад, недостаточны для анализа современных конструкций повышение рабочих параметров машин во многих случаях лимитируется возможностью создания прочной конструкции, и от материала приходится требовать, чтобы он работал на пределе, в то же время должна быть достаточная уверенность в надежности конструкции. Большое значение приобрели расчеты на прочность конструкций, подверженных действию динамических нагрузок, высоких температур, больших давлений появились многочисленные новые материалы с физическими и механическими свойствами, отличными от свойств привычных и хорошо изученных старых материалов. Поэтому учение о прочности представляет в настоящее время весьма обширную и разветвленную область знания, изложение всех ее аспектов и соответствующих методов и результатов в одной книге совершенно невозможно. При решении многообразных и сложных вопросов прочности для новых конструкций инженеру всегда приходится обращаться к помощи специальной литературы. Сопротивление материалов в обычном понимании слова — это лишь первый концентр сведений по механике деформируемого тв рдр б.тела, а именно изло-  [c.12]

Общие соображения. Одной из основных задач реологии является установление связей между параметрами, характеризующими физические признаки тела (материала), проявляемые в макроопыте. Реология изучает с единых позиций как твердые, так и жидкие тела.  [c.511]

Слой жидкой вязкой среды с не-Рис. 103. Распределение ско- изменными физическими параметрами ростей в условиях течения находится между неподвижным и куэтта движущимся телом с заданной по-  [c.280]

Решение il. Составление списка физических параметров, определ 1ющих Сх. На основании наблюдений заключаем, что при малых числах Му Сх зависит ог плотно сги жидк)0 сти р [кг/ м ], скорости нево эмущенного потока W [м/с], линейного размера тела / [м], вязкости жидкости ц [кг/(м с)].  [c.114]

Создание основ проектирования уплотнений связано со значительными трудностями. Круг вопросов уплотнительной техники чрезвычайно широк и требует комплексного решения сложных задач, находяш,ихся на стыке нескольких наук. Первым и самым трудным из них является раскрытие механизма действия уплотнительных устройств. Чаще всего этот вопрос связан с исследованием физических процессов на границе твердого тела и уплотнительного элемента, контактируюш,его с внешней и внутренней средой. Для гидравлических уплотнительных устройств наиболее распространенных в технике и представляющих собой устройства массового применения, особенностью протекающих физических процессов является большое влияние способности рабочей жидкости образовывать поверхностные пленки на сопряженных деталях и заращивать зазоры. Большое влияние оказывают также такие параметры, как вязкость, относительно малая сжимаемость и др. В остальном методы проектирования уплотнений являются общими для жидких и газовых сред. Уплотнительная техника должна включать разработку инженерной методики проектирования и эксплуатации уплотнений.  [c.3]

Физические основы процесса. Статика процесса. В условиях равновесия давление паров и температура твердого вещества находятся в однозначном соответствии. Связь между давлением и температурой фазового перехода определяется по диаграмме состояния (рис. 5.4.1). Кривые фазового равновесия мевду всеми тремя фазами в координатах температура - давление делят диаграмму на три смежные области область твердого, жидкого и газообразного состояния вещества, пересекаясь в п ойной точке В. В этой точке одновременно сосуществуют все три фазы (твердая, жидкая и парообразная). Линия 2 является геометрическим местом точек, отвечающих таким величинам температуры и давления паров, при которых находятся в равновесии твердое тело и пар. Линия 3 соответствует равновесию в системе жидкость - пар, линия I - равновесию в системе твердое тело - жидкость. Линия 4 соответствует метастабильным состояниям равновесия, характерным для некоторых веществ. В этом случае жидкая фаза может существовать при давлении более низком, чем давление тройной точки. Кривая 2 равновесия твердая фаза - пар позволяет определять параметры, при которых возможны процессы сублимации и десублимации.  [c.551]


Подавляющую часть физических процессов и явлений, которые происходят в сплош ных средах (жидких, твердых, газообразных, типа плазмы и др.), можно описать с помо щью систем дифференциальных уравнений или интегродифференциальных уравнений с частными производными. Такие уравнения — весьма сложный математический объект, особенно если они являются нелинейными, а именно учет нелинейных членов в урав нениях является зачастую решающим для описания очень важных эффектов механики сплошной среды. Надежное количественное описание таких эффектов является необхо димым элементом при проектировании самых различных машин и устройств, начиная от таких крупномасштабных объектов, как самолет, подводная лодка, ракета и кончая такими миниатюрными приборами, как интегральная схема, гибкий световод и т. п. Особенно существенно значение количественных характеристик явлений при оптимальном проек тировании конструкций, когда требуется добиться большей экономичности, дальности полета, минимального веса или улучшить другие аналогичные параметры. Так, например, проектирование летательных аппаратов, полет которых может проходить со скоростью, большей скорости звука, требует умения решать задачу об обтекании тела газовым пото ком в рамках нелинейных уравнений газовой динамики. Здесь в рамках линейных моделей не удается правильно описать эффект возрастания сопротивления при приближении ско зости полета к звуковой. Таких примеров можно было бы привести очень много.  [c.13]

В данной главе будут рассмотрены основные аспекты аэроупруго-ети, которые следует учитывать при проектировании рядг строительных конструкций, башен, вентиляционных труб, высотных зданий, висячих мостов, висячих вантовых покрытий, трубопроводов и линий электропередачи. В настоящее время не все из этих явлений еще полностью изучены. Действительно, для разработки моделей аэродинамических сил, действующих на колеблющееся тело, существует лишь несколько теоретических построений, полученных из основных законов гидродинамики. В большинстве же исследований предлагаются эмпирические модели, в которых аэродинамическое описание сущности явления должно быть дополнено и подкреплено экспериментом. Соответствующие аналитические модели обычно включают только минимально необходимое число параметров, чтобы отвечать наиболее характерным особенностям. наблюдаемых явлений. Такие модели поэтому служат для описания их в общих чертах, но не объясняют основных физических закономерностей, лежащих в основе этих явлений. Отдельные важные детали реального взаимодействия сооружения с жидкой средой в ряде случаев могут остаться незамеченными.  [c.156]


Смотреть страницы где упоминается термин Жидкие тела, физические параметры : [c.35]    [c.787]   
Справочник для теплотехников электростанций Изд.2 (1949) -- [ c.25 ]



ПОИСК



Пар Физические параметры

Тела жидкие, физические параметры твердые, физические параметры

Тело жидкое



© 2025 Mash-xxl.info Реклама на сайте