Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деаэратор выбор

Выбор конкретных мер защиты в каждом частном случае определяется их технологической и экономической целесообразностью, Одна из таких мер защиты заключается в применении ингибиторов коррозии. Ингибиторы коррозии — это такие вещества, введение небольших количеств которых в коррозионную среду, в упаковочные средства и во временные защитные покрытия (смазки, лаки и краски, полимеры и другие неметаллические пленки) снижает скорость коррозии и уменьшает ее вредные последствия [4 30 48]. Защитное действие ингибиторов связано с изменениями в состоянии поверхности защищаемого металла и в кинетике частных реакций, лежащих в основе коррозионного процесса. Ингибиторы вводятся в настолько малых количествах, что в отличие от нейтрализаторов, деаэраторов, осадителей и других регуляторов свойств среды практически не оказывают на нее влияния. Иногда ингибиторы (например амины) изменяют pH среды и поэтому могут рассматриваться как регуляторы ее свойств, а некоторые регуляторы свойств среды (например растворы аммиака) проявляют ингибирующие свойства за счет торможения ими катодной реакции при изменении pH, но это лишь исключения из общего правила.  [c.9]


Здесь уместно отметить важность учета интенсивной коррозии трубопроводов, по которым транспортируется химически обработанная вода, при выборе схемы ее обработки. На современных предприятиях металлургической, химической, бумажной и текстильной промышленности общая протяженность этих трубопроводов нередко достигает 20—30 км. Поэтому защита их от коррозии является весьма необходимой, так как ремонт и восстановление их требуют больших средств. Помимо коррозионных повреждений водопроводов, загрязнение воды железом при этом представляет собой вторую, не менее серьезную проблему. Как показывает опыт, содержание железа в известково-катионированной воде возрастает за счет коррозии на 1,0—1,5 мг/кг на каждые 700—1 ООО м. Поэтому перед подачей химически обработанной воды в сеть ее необходимо деаэрировать в деаэраторах вакуумного типа, устанавливаемых на водоподготовительных установках.  [c.264]

В промышленной, энергетике применяются деаэраторы типов ДВ и ДА, при этом их выбор определяется набором оборудования котельной установки и схемой тепловых сетей. Так, в водогрейных котельных, где отсутствуют паровые котлы и используется вода питьевого качества, применяются деаэраторы вакуумного типа, работающие при температуре 70 С. Такие деаэраторы применяются также в тепловых сетях с разбором горячей воды при концентрации бикарбонатов в исходной воде больше 2 мг-экв/кг (по условиям получения воды со значением pH, соответствующим стандарту). Вакуумные деаэраторы также используются в котельных малой мощности для деаэрации питательной воды паровых котлов производительностью до 2,5 т/ч.  [c.118]

Выбор температуры подогрева воды в деаэраторе определяется типом тепловой схемы и деаэратора и условиями работы питательных насосов, включаемых непосредственно за деаэратором. Питательные насосы обычной конструкции надежно работают с температурой воды до 110° С. Во избежание присоса воздуха через неплотности при работе деаэратора под вакуумом и необходимости установки специальных насосов для удаления воздуха (паровоздушной смеси) из деаэратора, стандартным принято давление в деаэраторе выше атмосферы, а именно 1,2 ата, и соответственно подогрев воды в нем до 104° С. Такой деаэратор называют смешивающим деаэратором атмосферного типа.  [c.141]

С X ема регенеративного подогрева питательной воды определяется на основе общих требований высокой надежности и экономичности принятым типом турбогенераторов, температурой питательной воды котельного агрегата, системой деаэрации и схемой включения деаэратора, типом и параметрами регенеративных подогревателей и питательных насосов. Выбор температуры питательной воды при регенеративном ее подогреве на установках с отечественным оборудованием определяется стандартом, приведенным в табл. 30 и 32.  [c.190]


Выбор числа деаэраторов производится по числу турбин или централизованно для всей станции.  [c.251]

При составлении ПТС решают вопрос о схеме отвода дренажей греющего пара (каскадную или с дренажными насосами), о наличии в регенеративных подогревателях охладителей пара и дренажа, об использовании в деаэраторах питательной воды постоянного или скользящего давления и выборе этого давления, об использовании протечек пара из  [c.140]

Принципиальная тепловая схема станции для стандартных турбин и парогенераторов СССР имеет в основе своей типовые заводские решения по паротурбинному агрегату, т. е. задано число отборов, число подогревателей, место включения деаэратора, место установки питательного насоса и другие детали схемы. При разработке принципиальных схем новых типов турбин обычно проводятся полные исследования по рациональному выбору отдельных элементов и всей схемы в целом. При этом стремление к максимальной экономии теплоты в схеме станции должно отвечать условию минимума приведенных затрат при обеспечении максимальной надежности работы оборудования станции. Обычно при составлении тепловой  [c.80]

В паротурбинных энерготехнологических блоках с пиролизом мазута во многих случаях оказывается возможным использовать типовое энергетическое оборудование, проверенное в длительной эксплуатации. Так, например, в составе энергетической части ЭТБ можно применять стандартные паровые турбины, регенеративные подогреватели, конденсаторы, системы технического водоснабжения, мазутное хозяйство и др. Некоторые изменения необходимо вводить в парогенератор (замена горелочных устройств, реконструкция хвостовых поверхностей нагрева). Режимы работы парогенератора остаются практически такими же, как и в обычных установках. Поэтому выбор вспомогательного оборудования энергетической части блока, питательных, бустерных, конденсатных и циркуляционных насосов, регенеративных подогревателей, деаэраторов, тягодутьевых машин производят так же, как и при проектировании обычных тепловых электростанций, сжигающих мазут в сыром виде.  [c.170]

На тепловых схемах котельных показывается основное и вспомогательное оборудование, объединяемое линиями трубопроводов для транспорта теплоносителей в виде пара и воды. На принципиальной тепловой схеме указывается лишь главное оборудование — котлы, подогреватели, деаэраторы, насосы и основные трубопроводы—без арматуры, всевозможных вспомогательных устройств и второстепенных трубопроводов, не уточняются количество и расположение оборудования. После разработки принципиальной тепловой схемы котельной и ее расчетов выбирается необходимое оборудование котельной. Целью расчета тепловой схемы является определение общих тепловых нагрузок — внешних и расходов теплоты на собственные нужды котельной и распределение нагрузок между паровой и водогрейной частями нагрузок определение всех тепловых и массовых потоков, необходимых для выбора вспомогательного оборудования и диаметров трубопроводов и арматуры определение данных для дальнейших технико-экономических расчетов.  [c.301]

Паровые пространства баков-аккумуляторов параллельно работающих деаэраторов должны быть соединены паровой уравнительной линией, выбор диаметра которой зависит, главным образом, от давления в деаэраторах и их тепловой нагрузки. Чем меньше давление в деаэраторах и больше тепловая нагрузка, тем больше должен быть при прочих равных условиях диаметр уравнительного паропровода.  [c.81]

Выбор расчетного давления рабочего пара. Основным соображением является обеспечение нормальной работы эжектора при любом давлении пара, при котором по данным завода-изготовителя допускается работа турбины. Для большинства эжекторов отечественных турбостроительных заводов это давление принято 13 ата. Выбор сравнительно невысокого давления вызывается стремлением избежать слишком малого сечения сопел (в малых эжекторах) и чрезмерного понижения коэффициента эжекции, что привело бы к понижению к. п. д. (см. фиг. 148). В настоящее время имеется тенденция к понижению давления рабочего пара для эжекторов с использованием для этой цели Выпара деаэраторов давлением —5—6 ата.  [c.317]


В насадочных деаэраторах существенное значение имеет правильный выбор материала и геометрической формы элементов насадки. Насадку изготовляют обычно из малоуглеродистой стали, которая при контакте с водой обеспечивает частичное поглощение кислорода и тем самым способствует основному процессу термической деаэрации воды. Так как назначение насадки — создание большой поверхности контакта деаэрируемой воды с паром и интенсивного перемешивания  [c.386]

Выбор места в схеме для установки вакуумного деаэратора при различных схемах обработки определяется качеством исходной воды, схемой водоподготовительной установки, применяемыми реагентами, ионитами и т. д.  [c.134]

Какие соображения положены в основу выбора диаметра отверстий в корытах противней деаэраторов равным 5 — 6 мм.  [c.193]

При составлении принципиальной тепловой схемы для надежной и экономичной работы на основе нагрузок, а иногда и технико-экономи-ческих расчетов определяются тип установки (паровая, водогрейная или иная котельная, теплоэлектроцентраль), вид и параметры теплоносителя. Далее проводится выбор оборудования — котельных или других агрегатов, иногда турбин схемы подогрева питательной воды способа и схемы подготовки воды для питания котельных агрегатов и для добавки в тепловые сети схемы отпуска теплоты технологическим и бытовым потребителям схемы сбора и очистки конденсата, возвращаемого от потребителей схемы использования теплоты от продувки котлоагрегатов, выпара из деаэраторов и от других частей установки [Л. 22, 27].  [c.292]

Разработка принципиальной тепловой схемы при расщирении электростанции имеет свои особенности. При этом должны решаться вопросы выбора типа расширения — путем пристройки или надстройки (полной пли частичной) развития регенеративной схемы связи между деаэраторами существующей и вновь проектируемой установок, их питательными насосами и т. п.  [c.148]

После выполнения расчета принципиальной тепловой схемы котельной с паровыми И водогрейными котлами 1Можно проводить выбор вспомогательного оборудования теплообменников, аппаратов хим во-ДООЧИСТК1И, деаэраторов, насосов и других устройств.  [c.304]

Паровое пространство баков-аикумуляторов параллельно работающих деаэраторов должно быть соединено паровой уравнительной линией, выбор диаметра которой зависит главным образом от давления в деаэраторах и их тепловой нагрузки. Чем меньше давление в деаэраторах и больше тепловая нагрузка, тем больше должен быть при прочих равных условиях диаметр уравнительного паропровода. При параллельной работе атмосферных деаэраторов производительностью 100 т/ч не рекомендуется применять диаметр уравнительного паропровода менее 200 мм. В случае параллельной работы деаэраторов с более высокой производительностью диаметр уравнительного паропровода необходимо принимать равным 250—300 мм.  [c.100]

Обработка питательной воды барабанных котлов гидразином в принципе шроизводится таким же путем, как и питательной воды прямоточных котлов (см. 3-4), с некоторыми малосущественными изменениями. К числу их относится в первую очередь выбор места ввода гидразина. В случае барабанных котлов гидразин вводится лишь в деаэрированную воду — в аккумуляторный бак деаэратора или во всас -питательного насоса.  [c.101]

Схема отпуска тепла со станции во многом предопределяет все остальные вспомогательные элементы станции, как-то деаэраторы, схему ВОДОПОДГОТОВ1КИ и регенеративного подогрева питательной воды. Однако часто возможны различные решения при выборе этих элементов.  [c.110]

Это обстоятельство сказывается на выбора места установки насоса о тепловой схеме. Выше говорилось, что желательно приблизить насосы к запасу воды, т. е. установить их непосредственно под деаэратором (см. схему фиг. 95). Это подтверждается и соображениями о затрате мощности на насосы. Однако в ряде случаев для того, чтобы не ставить под полное давление воды подогреватели высокого давления, питательные насосы располагают еа ними и применяют специальные лерекачивающие или бустер-насосы, которые ра эвиоают напор, достаточный для преодоления сопротивления системы регенеративного подогрева. Основные питательные насосы при такой двухступенчатой схеме (ом. схему фиг. 93) работают на горячей воде, подогретой в системе регенеративного подогрева до конечной температуры. Это увеллчи-вает расход мощности на питательные насосы я утяжеляет их эксплоатацию, потому что усложняются вопросы уплотнения со стороны высокого и низкого давления насосов, да и само низкое давление может достигать 30 аг и больше.  [c.135]

При выборе характеристики насоса следует учитывать возможн эсть снижения давления в деаэраторе (рд = 0).  [c.516]

По определенным суммарным расходам пара и горячен воды и вида топлива производится выбор типа, производительности и количества котлов. В котельных с общей тепловой мощностью (пар и горячая вода) примерно до 2 0 гДж/ч рекомендуется устанавливать только паровые котлы, а горячую воду для нужд отопления, вентиляции и горячего водоснабжения получать от пароводяных подогревателей. Для мощных котельных тепловой мощностью более 420 гДж/ч может оказаться рациональным применение комбинированных паровых котлов с гибкой регулировкой паровой и водогрейной нагрузкой. После выбора котлов производится выбор всего необходимого для их вспомогательного оборудования, т. е. теплообхменных аппаратов, аппаратуры водоиодготовки, насосов, баков и пр. Все выбранное оборудование наносится на тепловую схему. Условными линиями изображают трубопроводы для различного вида жидкостей, пара и газа. Сложные тепловые схемы котельных с паровыми, водогрейными и пароводогрейными котлами определяют необходимость расчета тепловых схем методом последовательных приближений. Для каждого элемента тепловой схемы составляют уравнение материального и теплового балансов, рещение которых позволяет определить неизвестные расходы и энтальпии сред. Общая увязка этих уравнений осуществляется составлением материального и теплового балансов деаэратора, в котором сходятся основные потоки рабочего тела. Ряд значений величин, необходимых для увязки тепловой схемы, получают из расчета ее элементов и устройств. Рядом значений величин можно предварительно задаваться. Например, на деаэрацию питательной воды и подогрев сырой и химической воды при закрытой системе водоснабжения от 7 до 10 % суммарного отпуска тепловой энергии внещним потребителям на потери теплоты внутри котельной 2—3 % той же величины.  [c.302]


Назначение испарителя — приготовление дистиллата для восполнения потерь конденсата и пара. Эти потери неизбел<ны и в правильно эксплуатируемых конденсационных электростанциях не превышают 2,5% (без учета продувки котлов). Для получения дистиллата образующийся в испарителе вторичный пар конденсируется в каком-либо охладителе, которым обычно служит один из поверхностных подогревателей регенеративной системы подогрева питательной воды (см. фиг. 2). Конденсат вторичного пара представляет собой добавочную воду и его количество определяет производительность испарителя. Испарительные установки, обеспечивающие получение дистиллата, т. е. высококачественной питательной воды, устанавливаются на электростанциях в тех случаях, когда химические методы очистки воды являются недостаточными или неэкономичными. С повышением давления предъявляются все более высокие требования к качеству питательной воды паровых котлов и особенно прямоточных. С другой стороны химические методы очистки воды тоже совершенствуются. Поэтому вопрос о выборе химической или термической (в испарителях) водоподготовки решается применительно к конкретным условиям. Вопрос этот рассматривается в курсе паросиловых установок. Необходимо отметить, что и при установке испарителей для устранения или уменьшения накипеобразования воду предварительно подвергают химической очистке и деаэрируют в специальном деаэраторе с давленйем 1,2 ата (фиг. 2).  [c.347]

Скорость пара имеет существенное значение для работы деаэратора и выбор диаметра корпуса определяется с учетом допустимой скорости пара. В пленочных деаэраторах при чрезмерной скорости пара пленки воды могут срываться паром и выбрасываться с выпаром. В струйных деаэраторах, особенно в нижних отсеках, где объемные расходы и скорости пара значительны, может возникнуть подпор пара, т. е. разница его давлений снизу и сверху каждой дырчатой тарелки. Этот подпор, равный паровому сопротивлению, обусловливается поворотами пара и сопротивлением, которое оказывает проходу пара вода, поступающая из отверстий в тарелках. Для подсчета парового сопротивления нет достаточно надежных данных. При всех прочих равных условиях величина подпора пропорциональна выражению т. е. произведению квадрата скорости пара на его удельный вес. При неизменном давлении пара (Т = onst) подпор пропорционален квадрату скорости пара или квадрату его расхода. Расход же греющего пара, согласно формуле (343), возрастает не только с увеличением расхода воды (производите льности деаэратора по воде), но и с уменьшением температуры поступающей воды. При увеличении расхода и скорости пара подпор возрастает, уровень воды на дырчатых тарелках повышается и вода начинает переливаться сплошным потоком через борта тарелок. Свободный проход пара прекращается, нарушается весь режим работы деаэраторной головки, наблюдается выброс воды с выпаром, а также гидравлические удары, что не только нарушает нормальную работу, но может привести к повреждениям оборудования. Для тарельчатых деаэраторов атмосферного давления (см. фиг. 192), по данным ЦКТИ, желательно иметь скорости пара по отсекам в пределах 1—5 м сек. Сечения для прохода пара определяются как площадь центрального отверстия в тарелке или как площадь кольца между корпусом и глухой тарел  [c.389]

Недогрев в /73 принимаем равнът 5 °С, так как из всех ПНД предусматриваем охладитель пара только в IT4. Для надежной работы деаэратора и его регулятора давления реко.мендуется величина подогрева основного конденсата в деаэраторе порядка 20 °С. Это условие определяет выбор давления отбора на Л4  [c.92]

Существенное влияние на надежность работы котлоагрегатов, а следовательно, и связанных с ними турбоагрегатов оказывает выбор числа и производительности питательных насосов. Особое внимание к вопросам надежности подачи в паровой котел питательной воды уделяется конструкциям котлов с естественной циркуляцией, у которых поддержание безопасного теплового режима барабана котла требует бесперебойной подачи питательной воды-. Для этой цели на изолированнькх электростанциях требуется установка питательных насосов с приводами от двух источников энергии, а именно с электроприводом и паровым приводом. При этом обязательно резервирование не меиее чем одним насосом каждого вида привода. Это приводит к необходимости выполнения схе,м главных питательных трубопроводов таких электростанций с попереч-нымп связями при относительно большом числе питательных насосов. Для прямоточны-х (безбарабанных) котлов требование двух видов приводов для питательных насосов необязательно, однако для выполнения условия резервирования необходимо применение схем питательных трубопроводов с поперечными связями. На рис. 9-17 приводится принципиальная схема питательной установки для котлов с естественной циркуляцией. По этой схеме вода поступает к питательному насосу из деаэратора под напором (геодезическая высота подпора). Величина 3 должна быть достаточной а) для компенсации гидравлических потерь на участке подачи воды от деаэратора к насосу б) для предотвращения всиинания воды в приемном патрубке насоса в) для предотвращения явлений кавитации нри входе воды на рабочее колесо. По практическим дан-  [c.257]

НОГО генератора и работает с противодавлением, достаточным для обогрева первой ступени подогревателей. Регенеративный лодогрев осуществлен от пяти отборов турбины, из которых два регулируемых и три нерегулируемых. Схема регенеративного подогрева включает также два деаэратора один на основном потоке питательной воды (деаэратор повышенного давления) и другой на потоке добавочной воды (деаэратор атмосферного типа). На схеме нанесены также условные обозначения расходов 1И параметров теплоносителя, дающие возможность составить систему связанных друг с другом расчетнЫ Х уравнений для вычисления отдельных потоков (включая потери). В итоге расчета может быть определен суммарный расход пара по станции, а следовательно, и нужная паропроизводительность котельной и к. п. д. станции брутто и нетто. На базе теплового расчета принципиальной тепловой схемы и выбора единичных производительностей основного и вспомогательного оборудования станции составляется полная тепловая схема для установки двух турбин (рис. 9-22). На этой схеме показано, что для каждой турбины принята уста-  [c.262]

Эффективность работы деаэратора зависит от температуры поступающей воды, оптимальное значение которой около 80 С, от температуры выходящей из деаэратора па ровоздушной смесл и от начального содержания кислорода. Обычно деаэраторные головки. компонуют с питательными баками. Емкость питательного бака, совмещеиного с деаэраторной головкой, следует выбирать, руководствуясь теми же соображениями, что и при выборе емкости питательных баков без этих устройств.  [c.175]


Смотреть страницы где упоминается термин Деаэратор выбор : [c.292]    [c.145]    [c.127]    [c.81]    [c.267]    [c.292]    [c.198]   
Тепловые электрические станции (1949) -- [ c.251 ]



ПОИСК



Деаэратор



© 2025 Mash-xxl.info Реклама на сайте