Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнетизм

Величина Ж в (19.17) определяется не только внешним магнитным полем, но и всегда имеющимся остаточным магнетизмом вещества. Помимо электронных магнитных моментов, от которых зависит парамагнетизм, существуют магнитные моменты на разных уровнях организации материи, вплоть до элементарных частиц. Поэтому поле в веществе, строго говоря, никогда не равно нулю. Но при конечном Ж уменьшение Т приводит к возрастанию параметра разложения функции Jt в ряд, и при низкой температуре ограничение одним членом ряда становится необоснованным. Внешне это выражается в зависимости постоянной А в (19.17) от температуры. Разбавление парамагнетика понижает температуру, при которой наблюдается конденсация магнитного газа , но из-за существования, например, спиновых магнитных моментов атомных ядер не может снизить уровень остаточного магнетизма до нуля.  [c.164]


Выводы специальной теории относительности изложены детально. Основные результаты этой теории имеют существенное значение для разработки темы Электричество и магнетизм в т. II.  [c.11]

Важное условие, определяющее план изложения первой части нашего курса, посвященной механике, состоит в том, что в этой части курса должны быть подробно изучены лоренцевы преобразования пространства и времени гл. 11) и импульса и энергии (гл. 12) как необходимая предпосылка для изложения теории электричества и магнетизма в т. П. По нашему мнению, на прохождение первых девяти глав должно быть отведено не более двух третей всего учебного времени, даже если для этого придется пропустить кое-что из материала, находящегося в предыдущих главах.  [c.13]

Перейдем теперь к обсуждению природы диа-, пара- и ферромагнетизма. При этом отметим еще раз тот факт, что магнитную активность проявляют все тела без исключения. Следовательно, за магнитные свойства вещества ответственны элементарные частицы, входящие в состав любого атОма. Такими частицами являются протоны, нейтроны и электроны. Опыт показывает, что магнитный момент ядра, состоящего из протонов и нейтронов, примерно на три порядка меньше магнитного момента электрона. Поэтому при обсуждении магнитных свойств твердых тел магнитными моментами ядер обычно пренебрегают. Не следует думать, однако, что ядерный магнетизм вообще не играет никакой роли. Имеется ряд явлений (например, ядерный магнитный резонанс), в которых, эта роль чрезвычайно существенна.  [c.321]

Затишье перед бурей. XIX столетие ознаменовалось целым рядом достижений в физике. К ним относятся достижения в области электричества и магнетизма, которые привели к теории электромагнитного поля Максвелла и позволили включить оптику в рамки электромагнитных явлений значительный прогресс в развитии классической механики, которая достигла особой стройности и законченности благодаря блестящим математическим исследованиям разработка универсальных физических принципов, среди которых на первое место следует поставить закон сохранения и превращения энергии. Неудивительно, что к концу века стало складываться убеждение в том, будто физическое описание законов природы близко к окончательному завершению.  [c.34]

Мы кратко рассмотрим это явление в связи с тем, что метод парамагнитного резонанса дал очень важные результаты при исследовании магнетизма при низких температурах.  [c.405]

Уравнения Максвелла. Во второй половине XIX в. Максвелл на основе проведенного им глубокого анализа известных тогда законов электричества и магнетизма разработал электромагнитную теорию поля и предложил уравнения, носящие с тех пор его имя. Для однородной (диэлектрическая и магнитная проницаемости е = onst, fA onst) непроводящей (поверхностная и объемная плотности свободных зарядов а = О, р 0) изотропной среды уравнения Максвелла имеют следующий вид  [c.21]


Английский физик Джеймс Максвелл (1831 —1879) па основании изучаняя экспериментальных работ Фарадея по электричеству и магнетизму в 1864 г. высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами.  [c.247]

Попытка радикального решения этой проблемы была предпринята в университете г. Беркли (США, Калифорния), где в 1961 г. был создан специальный комитет из ученых, поставивших своей целью создание учебника нового типа. Первые два тома этого учебника (механика, электричество и магнетизм) вышли в 1965 г., сейчас закончено издание трех остальных томов (волны, квантовая и статистическая физика). Три небольшие книги содержат описание тридцати шести работ Берклеевской физической лаборатории, идейно связанных с новым общим курсом. Создатели Берклеевского курса стремились изложить в учебнике классическую физику, органически связав ее с основными идеями специальной теории относительности, квантовой физики и статистики, — и именно в этом-то и заключены основные достоинства учебника.  [c.6]

Наиболее интенсивно изучается фазовый переход между магнитным и немагнитным состояниями вещества. Во многих веществах имеются элементарные атомные магниты, которые стремятся расположиться параллельно друг другу. Если тепловые флуктуации достаточно малы, такая тенденция приводит к макроскопическому (наблюдаемому) упорядочиванию, которое и называется магнетизмом. Этот порядок с ростом температуры становится все более нечетким, а в точке Кюри (названной так в честь Пьера Кюри - мужа Марии Кюри) порядок превращается в беспорядок. Для железа это происходит при температуре 770 С. Выше этой температуры есть только намек на магнетизм на определенных расстояниях и в течение определенных проме-xgrn os времени эшмент вые магниты могут сохранять упорядоченность,  [c.83]

Наибольшего развития волновые представления о свете в XVIII веке достигли у Эйлера. Согласно Эйлеру свет представляет собой колебания эфира, подобно тому как звук есть колебания воздуха, причем различным его цветам соответствуют колебания различной частоты. Сравнение скорости света со скоростью звука позволило Эйлеру утверждать, что эфир есть субстанция, значительно более тонкая и упругая, чем обыкновенный воздух . Эйлер, подобно Ломоносову, высказывает мысль, что источником всех электрических явлений служит тот же светоносный эфир. Согласно Эйлеру электричество есть не что иное, как нарушение равновесия эфира тела, в которых плотность эфира становится больше, чем в телах окружающих, оказываются наэлектризованными положительно отрицательная электризация связана с уменьшением плотности эфира. Эйлер не распространял свою теорию на магнитные явления, поскольку электрическая природа магнетизма не была еще известна. Эти соображения были развиты Эйлером в его знаменитых Письмах к немецкой принцессе , написанных в 1760— 1761 гг. и изданных в Петербурге (1768—1772 гг.) во время второго пребывания Эйлера в России, куда он прибыл уже после смерти Ломоносова, с которым он состоял в постоянной дружеской научной переписке. Поэтому не исключено, что указанные представления сложились у Эйлера под влиянием идей Ломоносова.  [c.23]

Вследствие квантования механических моментов Ps и Рь квантованными оказываются и магнитные моменты. Квант магнитного момента равен магнетону Бора-, лв = ей/(2т)=9,27-10 А-м . Полному механическому моменту атома, определяемому как векторная сумма Pj=Pi,4-Ps, соответствует полный магнитный момент атома Mj, проекции которого на направление поля Н определяются выражением MjH = —wijg UB. Здесь т,- — магнитное квантовое число g — фактор расщепления Ланде, называемый также g-фактором. Для чисто спинового магнетизма g = 2, для чисто орбитального =1- У всех атомов и ионов, имеющих полностью заполненные электронные оболочки, результирующие спиновые и орбитальные магнитные моменты равны нулю. Вследствие этого равен нулю и полный магнитный момент. Атомы или ионы, обладающие недостроенньгаи внутренними оболочками (переходные и редкоземельные элементы), а также содержащие нечетное число электронов в валентной оболочке, имеют отличный от нуля резуль-21—221 321  [c.321]

Гиромагнитные опыты Эйнштейна — де Гааза и Барнетта показали, что в ферромагнетиках самопроизвольная намагниченность обусловлена спиновым магнетизмом электронов, а из опыта Дорфмана следовало, что взаимодействие между электронами соседних атомов с недостроенными оболочками, приводящее к ферромагнетизму, имеет немагнитную природу.  [c.336]


Во втором подходе, разработанном Гейзенбергом, предполагается, что магнитные моменты, образующие упорядоченную ферромагнитную (или антиферромагнитную) структуру, локализова- ны около узлов кристаллической решетки. В этой модели ферро-. магнетизм связан с упорядочением магнитных моментов соседних ионов с недостроенными d- или f-оболочками. Обменное взаимодействие электронов соседних ионов получило название прямого обмена. Оно связано с перекрытием распределений заряда различных магнитных ионов (т. е. ионов с недо-строенными d- или f-оболочками). Однако во многих сплавах и химических соедине-а) ниях магнитные ионы отделены друг от  [c.338]

Объединение электричества и магнетизма. Уже в 1801 г. было установлено, что при прохождении электрического тока через застворы солей на электродах происходит выделение вещества рис. 14). Это явление было названо электролизом, и его исследование сыграло очень важную роль в установлении дискретной природы электричества. Изучая явления газового разряда, русский ученый В. В. Петров в 1802 г. открывает электрическую дугу. В 1820 г. датский физик X. Эрстед обнаружил, что электричество и магнетизм связаны друг с другом. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенного вблизи проводника. Впервые два до сих пор изучавшихся раздельно физических явления связываются друг с другом. Француз  [c.96]

А. М. Ампер, выполнив множество экспериментов по изученлю взаимодействия между электрическим током и магнитом, устанавливает основные законы взаимодействия токов и предлагает первую теорию магнетизма. Громадным вкладом в развитие теории и практики электромагнетизма явились исследования выдающегося английского физика-экспериментатора М. Фарадея. В 1821 г. он впервые создал лабораторную модель электродвигателя, осуществив вращение магнита вокруг проводника с током. В 1831 г. он открыл явление электромагнитной индукции и установил его законы. М. Фарадей впервые ввел понятие электромагнитного поля как передатчика взаимодействия между заряженными телами. Пространство, которое у Ньютона выступало как пассивный свидетель физических явлений, оживает и становится их участником. 96  [c.96]

Подведем некоторые итоги исследований электромагнитных явлений. Изучены основные законы взаимодействия, установлена связь электричества и магнетизма. Разработан математический аппарат теории, и... в то же время остается совершенно невыяс-  [c.97]

В 4 говорилось о создании Дж. Максвеллом теории электромагнитных явлений. Впервые работа, в которой она была изложена достаточно полпо, появилась в 1864 г. Одна из частей ее называлась кратко и емко Электромагнитная теория света . Этот вывод был сделан им на основании результатов совпадения числсзвого значения входящего в уравнения (б9) — (70) коэффициента с со значением скорости света. Максвелл уверенно пшиет о том, что свет и магнетизм являются проявлениями одной и той же субстанции и что свет является электромагнитны [ возмущением, распространяющимся через поле в соответствии с законами электромагнетизма [18].  [c.116]

Первостепенной задачей теории является нахождение единой причины существующих частных явлений или законов и уменьшение числа независимых исходных положений. Этот процесс давно уже идет в физике. Достаточно вспомнить объединение земного и космического тяготений в законе всемирного тяготения Ньютона, объединение электричества и магнетизма в электродинамике Максвелла, установление связи между микро- и макропараметрами систем Больцманом, связь геометрии физического пространства с теорией гравитации в общей теории относительности Эйнштейна и т. п. Удивительнейший пример единства природы открывает связь явлений, происходящих в микромире и Вселенной, о чем идет речь в этой части книги. Многие свойства Вселенной определяются характеристиками фундаментальных взаимодействий, происходящих в микромире. И, напротив, происходящие во Вселенной процессы дают много для понимания свойств элементарных частиц и необходимы для построения правильной теории. Но все же впереди очень и очень шого работы.  [c.200]

В 1846 г. М. Фарадей экспериментально открыл явление поворота плоскости поляризации светового пучка, который пропускался сквозь кристалл, помещенный в магнитное поле. Это магнитооптическое явление называют сегодня эффектом Фарадея . Обнаружив данный эффект, Фарадей тем самым продемонстрировал существование связи между оптикой и магнетизмом. Вскоре он написал статью Мысли о лучевых колебаниях , где поставил впрос не могут ли световые волны передаваться по электрическим и магнитным силовым линиям Иными словами, не является ли электромагнитный эфир (его существование в те времена пока еще не подвергалось сомнению) также и той средой , в которой распространяются световые волны Таким образом, Фарадей предлагал заменить полную внутренних противоречий механическую модель светоносного эфира электромагнитной моделью.  [c.29]

Настоящая глава служит введением к изучению последующих г лав и ноутому в пей НС дается полного описания явлений магнетизма, а приводятся только пеко-торые детали вопроса, которые связаны с исследованиями в области низких температур. Ие рассматривается диамагнетизм, ферромагнетизм и магнитные свойства металлов.  [c.381]

Если начать с некоторых замечанпй о первоначальных исследованиях по магнетизму, то следует прежде всего упомянуть фундаментальную работу П. Кюри, установившего закон температурной зависимости магнитной восприимчивости для многих солей  [c.381]

Новая стадия в исследованиях по магнетизму наступила лишь после того, как было получено достаточное количество данных при низких температурах. В этой связи мы прежде всего отметим предположение Беккереля [2]пБрю-нетти [3], заключающееся в том, что отклонения от свойств свободных магнитных диполей связаны с воздействием на магнитный ион неоднородных электрических полей окружающих ионов. В общем виде эта идея была развита Бете [4], который пришел к выводу, что указанные ноля могут частично или полностью снимать вырождение энергетических уровней свободных магнитных ионов. Крамере [5] показал, что в случае иопов с нечетным числом электронов в незаполненной оболочке, обусловливающей магнитные свойства, неоднородные электрические ноля не могут полностью снимать вырождения. Уровни в этом случае должны быть по крайней мере дублетами (вырождение Крамерса). Такое вырождение может быть снято только шаг-  [c.382]


В 30-х годах Ван-Флек [6, 7] разработал систематическую теорию магнетизма, основанную на квантовой механике. Он и его ученики, а также Крамере со своими учениками рассмотрели с помощью этой теории ряд специальных случаев в связи с экспериментальными работами Беккереля и его сотрудников в лаборатории Камерлинг-Оннеса в Лейдене. После второй мировой войны многие работы в этой области были сделаны Прайсом с сотрудниками в Оксфорде в связи с эксиернментамн, проводимыми в Кларен-донс[<ой лаборатории.  [c.383]

Уже упоминалось, что ионы элементов группы железа обладают только спиновым магнетизмом (гипотеза Бозе-Стонера). Объяснение этих свойств  [c.388]

Сульфат гадолиния. Gd2(SOj )3 SHjO вес грамм-иона 373,0 плотность 3,010. Свободный ион гадолиния находится в состоянии 6 и, следовательно, орбитальный магнетизм отсутствует. Восьмикратно вырожденный спиновый уровень расш епляется кубическим нолем на два дублета и квар тет, расположенный между ними расстояния между уровнями находятся в отношении 3 5 [100]. Поле более низкой симметрии может вызвать дальнейшее расщепление квартета. Если эти штарковские расщепления малы по сравнению с 1° К, то магнитный момент и энтропия могут быть описаны  [c.497]

Молекулярное поле Всйсса — магнитное внучрсннес эффективное поле, вводимое в квантовой теории магнетизма для приближенного описания обменного взаимодействия мeжJ y атомными магнитными моментами.  [c.283]


Смотреть страницы где упоминается термин Магнетизм : [c.252]    [c.13]    [c.11]    [c.113]    [c.34]    [c.343]    [c.352]    [c.376]    [c.381]    [c.385]    [c.388]    [c.400]    [c.427]    [c.427]    [c.481]    [c.488]    [c.598]    [c.103]    [c.125]    [c.130]    [c.321]    [c.341]    [c.243]   
Смотреть главы в:

Физические величины  -> Магнетизм

Электрооборудование тракторов и автомобилей  -> Магнетизм

Приборы на самолете  -> Магнетизм

Приборы на самолете  -> Магнетизм


Справочник машиностроителя Том 2 (1955) -- [ c.331 ]

Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.448 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.331 ]

Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.41 ]

Теория твёрдого тела (1972) -- [ c.515 , c.556 ]

Механика электромагнитных сплошных сред (1991) -- [ c.37 , c.40 , c.331 ]



ПОИСК



Векторный потенциал и магнетизм электронов

Виды магнетизма

Генераторы Поле остаточного магнетизма Схема гашения

Глава Ш Макроскопическая теория ядерного магнетизма A, Введение

Диамагнетизм сравнение с магнетизмом электронов

Единицы величин магнетизма

Земной магнетизм

КООПЕРАТИВНЫЕ ЯВЛЕНИЯ Магнетизм

Кандела магнетизма

Количество магнетизма

Краткие сведения о земном магнетизме

Курсы самолета Земной магнетизм

МАГНЕТИЗМ МАЛЫХ ЧАСТИЦ

МАГНИТНЫЕ КОМПАСЫ Стр Сведения о земном магнетизме

Магнетизм и электромагнетизм

Магнетизм кооперативный

Магнетизм частиц и анализ кривых механического крутящего момента

Магнетизм электронного газа

Макроскопическая теория ядерного магнетизма Статическая восприимчивость

Нестационарные методы в ядерном магнетизме

Опыты с магнетизмом

Основные свойства, понятия и элементы земного магнетизма

Остаточный магнетизм

Природа магнетизма

Происхождение магнетизма

Сверхпроводимость и магнетизм

Статистическая механика электронных моделей магнетизма

Таблица ПЗ. Единицы электричества и магнетизма

Типы магнетизма

Упорядоченный магнетизм при участии валентных электронов и электронов проводимости. Модель коллективных электронов

Уравнения Хартри — Фока и магнетизм свободных электронов

ЧАСТЬ ПЯТАЯ МАГНИТНЫЕ МАТЕРИАЛЫ Краткие сведения по теории магнетизма и классификация магнитных материалов

Электричество и магнетизм

Элементарные носители магнетизма в ферромагнитных , телах



© 2025 Mash-xxl.info Реклама на сайте