Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие температурные шкалы

Установим связь абсолютной шкалы температур с другими температурными шкалами, прежде всего со шкалой температуры идеального газа.  [c.68]

ДРУГИЕ ТЕМПЕРАТУРНЫЕ ШКАЛЫ  [c.117]

Историю термометрии с начала 18 столетия можно проследить по двум направлениям, родоначальниками которых были Фаренгейт и Амонтон. С одной стороны, разрабатываются все более точные практические шкалы, основанные на произвольных фиксированных точках, такие, как шкалы Фаренгейта, Цельсия и Реомюра, при одновременном создании все более совершенных практических термометров. С другой стороны, наблюдается параллельное развитие газовой термометрии и термодинамики. Первый путь привел (через ртутные термометры) к появлению платиновых термометров сопротивления, к работам Каллендара и наконец в конце 19 в. к платино-платинородиевой термопаре Шателье. В гл. 2 будет показано, что кульминационной точкой в практической термометрии явилось принятие Международной температурной шкалы 1927 г. (МТШ-27). Следуя по пути развития газовой термометрии, мы придем к работам Шарля, Дальтона, Гей-Люссака ш Реньо о свойствах газов, из которых следуют заключения о том, что все газы имеют почти одинаковый коэффициент объемного расширения. Это послужило ключом к последующему пониманию того, что газ может служить приближением к идеальному рабочему веществу для термометра и что можно создать  [c.32]


В этой главе, посвященной практическим вопросам измерения температуры, прежде всего рассматриваются три основных метода первичной термометрии. Это — классическая газовая термометрия, акустическая газовая термометрия и шумовая термометрия. Затем выясняется роль магнитной термометрии. Магнитная термометрия в обсуждаемом случае не применяется в качестве первичного метода, однако она тесно связана с первичной термометрией и поэтому ее роль выясняется ниже. То же самое можно сказать о газовых термометрах, основанных на коэффициенте преломления и диэлектрической проницаемости как тот, так и другой могут быть использованы в качестве интерполяционного прибора. Термометрия, основанная на определении характеристик теплового излучения, рассматривается отдельно в гл. 7. В данной главе в основном обсуждаются принципиальные основы каждого из методов, а не результаты измерений, поскольку последние были представлены в гл. 2, где говорилось о температурных шкалах.  [c.76]

Для прецизионной термометрии наибольший интерес представляют низкотемпературные точки кипения или тройные точки таких газов, как гелий, водород, неон, кислород, аргон и метан. Основные принципы реализации любой из этих точек являются общими для всех. Они будут изложены в процессе описания аппаратуры и методики работы с ней при реализации тройной точки и точки кипения водорода. При этом будут отмечены специфические особенности работы с другими газами. Измерение давления паров Не и Не занимает особое место, поскольку обеспечивает воспроизведение принятых международных температурных шкал. Эти шкалы и их реализация обсуждались в гл. 2.  [c.152]

Воспроизводимость тройных точек аргона, азота и метана, реализованных таким образом, составляла 0,1 мК. Для неона и криптона, однако, воспроизводимость несколько хуже, 0,2 мК. Причина, вероятно, состоит во влиянии изотопов этих двух газов. Для таких газов, как аргон, азот, кислород и водород, плато плавления проходит в очень малом температурном интервале, меньшем 0,5 мК, и поэтому легко заметить и воспроизвести плоскую часть плато. Это труднее сделать для таких газов, как неон и криптон, имеющих интервал плавления соответственно 0,8 и 1,5 мК и по этой причине обладающих несколько худшей воспроизводимостью в качестве температур реперных точек. Тройную точку ксенона следует отнести к другой категории, поскольку в этом случае интервал плавления больше 4 мК, что делает ее непригодной для использования в качестве реперной точки температурной шкалы. Это обусловлено большим количеством естественных изотопов, ни один из которых не является доминирующим, а также большим различием их атомных весов 29 % изотопов имеют атомный вес не более 129 г и 19 % — атомный вес свыше 134 г.  [c.164]


Выберем температурную шкалу такой, чтобы разности между основными точками — о = 100°С и Г]—7 о=ЮОК соответствовали друг другу. Тогда  [c.52]

Термодинамическая температурная шкала не связана с конкретными свойствами рабочего (термометрического) тела. Следовательно, термодинамическая температура является не эмпирической, а универсальной температурой. Легко убедиться, что термодинамическая температурная шкала является равномерной шкалой. Это вытекает из соотношения (2.6) и может быть уяснено из рассмотрения последовательного ряда двигателей Карно, каждый из которых характеризуется одной и той же величиной производимой работы L, а количество теплоты, отдаваемое одним двигателем, полностью передается другому (рис. 2.7).  [c.67]

Использование любого другого свойства вещества, для которого заранее не известна зависимость от температуры, для создания температурной шкалы невозможно. Так, если пытаться создать температурную шкалу, используя свойство расширения ртути от температуры (ртутный термометр), то заранее, до установления температурной шкалы, не известно, как зависит коэффициент расширения ртути от температуры поэтому использование этого свойства приведет к неизбежным ошибкам в температурной шкале (цена одного градуса будет различной при разных температурах, т. е. шкала будет неравномерной). Использование еще какого-либо свойства для построения температурной шкалы приведет к другим ошибкам. Эти шкалы, называемые эмпирическими, не будут совпадать.  [c.71]

Было указано в 1-2, что если две изолированные системы находятся на различных уровнях температуры, то эта разность проявляется в том, что, когда тело одной системы приводится в контакт с телом. другой системы, происходит изменение свойств обоих тел. Величина любого свойства, изменяющегося с температурой, может быть использована как мера температуры, а температурная шкала может быть определена по изменению этого свойства. Тело, которое используется для измерения температуры, называется термометром.  [c.45]

Как бы велико ни было число температурных шкал, входящих в восемь указанных групп, каждая из этих шкал отлична от всех других. Температуры точки льда и точки кипения воды могут быть зафиксированы так, что они будут одинаковыми для всех шкал, но при всех других уровнях температуры различные шкалы будут в разной степени отличаться одна от другой. С другой стороны, второй закон позволяет дать определение температурной шкалы, не зависящей от природы термометрического вещества.  [c.45]

Две другие термодинамические шкалы температуры определяются через абсолютные температурные шкалы, определение которых дано выше, так, чтобы быть сопоставимыми со старыми шкалами ртутногО термометра.  [c.47]

Подчеркнем еще раз, что хотя численно термодинамическая и идеально-газовая шкалы, как показано, абсолютно идентичны, с качественной точки зрения между ними существует принципиальная разница термодинамическая шкала является единственной температурной шкалой, не зависящей от свойств термометрического вещества в отличие от всех других шкал, в том числе и идеально-газовой.  [c.75]

В качестве реперных точек при построении различных температурных шкал использовались или используются (помимо упомянутых выше точек плавления льда и кипения воды при атмосферном давлении), например, так называемая тройная точка воды, точки затвердевания сурьмы, серы, цинка, золота и другие точки. Численные значения температуры, соответствующие каждой реперной точке, строго установлены с помощью газового термометра (как уже отмечалось ранее, термодинамическая шкала температур — это было показано еще Кельвином — нуждается в одной реперной точке).  [c.76]

Температурные шкалы, полученные таким образом, не отличаются друг от друга, так как термический коэффициент расширения идеального газа а и термический коэффициент давления р не зависят от температуры и одинаковы для идеального газа  [c.75]

Абсолютная температурная шкала Кельвина совпадает со шкалой идеальных газов и, следовательно, со шкалой разреженных газов. С другой стороны, как видно из данных, приведенных в табл. 2-32, значение р для Н2 очень близко к значению у, так что водородная шкала, полученная при постоянном объеме, может быть с полным основанием принята как.очень близкая к термодинамической шкале.  [c.64]


Со старой шкалой Цельсия, построенной на другой основе, Международная практическая температурная шкала совпадает лишь в точках О и 100° С. Однако, поскольку старая шкала Цельсия к настоящему времени полностью вышла из употребления, было решено использовать распространенный термин градус Цельсия .  [c.210]

Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда. По шкале Цельсия интервал между этими реперами равен 273,16 С. По шкале отношений можно определить не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.  [c.140]

Для измерения аддитивных (экстенсивных) величин (например, длины, массы) можно опираться на воспроизведение размеров их единиц. Так как температура не подчиняется закону аддитивности, то воспроизведение одной эталонной точки (тройной точки воды) не позволит точно определять другие температурные точки. Поэтому необходимо точное воспроизведение нескольких температурных точек (они называются реперными), совокупность которых образует температурную шкалу. Между реперными точками шкала воспроизводится с помощью эталонных средств, в которых температура определяется через какую-либо аддитивную величину, связанную с температурой функциональной зависимостью заданного вида. Коэффициенты  [c.329]

Влияние температуры на модуль упругости типичных полимеров уже обсуждалось в гл. 2. Следует повторить, что в области стеклования наблюдается резкое падение модуля. Молекулярная масса полимера, частота поперечного сшивания, кристаллизация, пластификация и другие факторы определяют конкретную форму зависимости модуля упругости от температуры. Кривые динамический модуль—температура в принципе аналогичны графикам, приведенным в гл. 2. В динамических методах измерения частота (временная шкала испытания) должна быть постоянной при изменении температуры. На рис. 4.1 показано влияние частоты на температурные зависимости модуля и показателя механических потерь. Сдвиг кривых при изменении частоты зависит от абсолютной величины Тс и энергии активации АЯ. При возрастании частоты на один десятичный порядок смещение, точки перегиба на зависимости модуля или положения максимума механических потерь по температурной шкале от Т1 до Т (в К) можно рассчитать по формуле  [c.92]

В 1873 г. Д. И. Менделеев высказал аналогичную мысль о возможности построения абсолютной температурной шкалы с одной постоянной точкой [1]. Он предложил построить шкалу, воспроизводимую с помош,ью газового термометра, приняв за исходную точку водород, находящийся под давлением в 1000 граммов на квадратный сантиметр при температуре плавления льда. Размер градуса в такой шкале (Д. И. Менделеев назвал его метрическим градусом ) определяется таким повышением температуры, которое увеличивает давленпе в газовом термометре на 1 грамм на квадратный сантиметр. Однако Д. И. Менделеев считал возможным разработать и другие метрические системы температур .  [c.68]

До сих пор мы, однако, пользовались только опытной температурной шкалой. Чтобы дать точную формулировку постулата Клаузиуса, следует сначала определить, что мы подразумеваем, когда говорим, что одно тело имеет более высокую температуру, чем другое. Если привести два тела, имеющих различную температуру, в тепловой контакт, то теплота самопроизвольно перейдет от одного из них к другому. Таким образом, можно заключить, что тело, из которого теплота переходит, имеет более высокую температуру, чем другое тело. Теперь можно сформулировать постулат Клаузиуса следующим образом если при контакте теплота переходит от тела А к другому телу В, то невозможен процесс, единственным конечным результатом которого был бы переход теплоты от В к А.  [c.33]

Если выбрать на температурной шкале одну реперную точку (постоянную точку), произвольно приписав ей температуру Го, и провести цикл Карно, причем один из резервуаров теплоты (например, охладитель), имел бы температуру То, а другой (нагреватель) — температуру Г, то на основании (14.4) можно определить любую температуру Г, измерив предварительно количества теплоты Ql и ( 2-  [c.139]

За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]


Достигнуть соглашения о шкале по давлению паров Не оказалось значительно труднее, чем можно было ожидать. Эти трудности типичны для построения любой новой практической температурной шкалы. Главным здесь является вопрос обоснования формулы для температурной зависимости, которая может быть или строго выведенной термодинамической формулой или эмпирическим соотношением, хорошо опи-сываюшим экспериментальные данные. Идеальным был бы первый подход, однако, если термодинамическое соотношение содержит много констант, которые трудно оценить и численные значения которых ненадежны, все преимущества описания экспериментальных данных термодинамической формулой теряются. С другой стороны, чисто эмпирическое соотношение для описания результатов может не обнаружить термодинамического несоответствия между частями шкалы и ошибок в измерениях. В начале 50-х годов оценки точности термодинамического способа вычисления температурной зависимости давления паров Не были примерно такими же, как и для чисто эмпирического описания имевшихся экспериментальных данных. Эти оценки были разными в зависимости от давления паров и служили предметом дискуссий [38]. В качестве компромиссного решения была разработана таблица температурной зависимости давления насыщенных паров и никакого уравнения не предлагалось. Эта таблица была представлена ККТ в 1958 г. одновременно сторонниками обоих способов вычисления температурной зависимости. Дискуссия была весьма острой, и ее участники нередко меняли свое мнение на противоположное Принятая в 1958 г. ГКМВ таблица получила название шкалы Не-1958 с обозначением температуры по этой шкале и перекрывала интервал от 0,5 до  [c.69]

Уравнение (3.95) описывает изотерму, наклон которой определяется величиной Л]. Чтобы определить температуру, необходимо знать значения Р, а и К. Полагая величину Р известной, величины а и Р можно определить по двум калибровочным точкам. Эффективная сжимаемость К может быть измерена и другими способами, однако с нужной точностью это сделать трудно. Другой подход требует достаточно точных значений поляризуемости термометрического газа а. Гловер и. Вейнхольд [29] вычислили возможную верхнюю и нижнюю границы поляризуемости Не. На основании известных теоретических работ они предложили значение а, равное 517,031-10 см -моль . Очень близкое к этому значение а, равное 517,033-10 см -МОЛЬ , получили Букингем и Хиббард [8]. Экспериментальное значение, найденное Гьюгеном и Миче-лом [30], составляет (517,257 0,025) 10 см -моль . Это значение основано на температурной шкале НФЛ-75, а указанная" погрешность соответствует погрешности 1 мК НФЛ-75 при погрешности 3 % в измеренной величине сжимаемости К- Разница между экспериментальными и теоретическими значениями а еще не нашла своего объяснения.  [c.131]

Все большее число работ свидетельствует о том, что шкалы по давлению паров гелия [1, 2] и низкотемпературная часть Международной практической температурной шкалы 1968 г. (МПТШ-68) существенно отклоняются от термодинамической температуры и, кроме того, не соответствуют друг другу. Эти недостатки действующих практических температурных шкал стали очевидными и были изучены Консультативным комитетом по термометрии (ККТ). В результате в 1976 г. ККТ предложил Международному комитету по мерам и весам (МКМВ) рекомендовать к использованию в международном масштабе новую Предварительную температурную шкалу от 0,5 до 30 К до тех пор, пока не будет принята новая Международная практическая температурная шкала [4]. МКМВ поручил ККТ опубликовать Предварительную температурную шкалу 1976 г. от  [c.437]

Термодинамическая температурная шкала никак не связана с конкретными свойствами рабочего, т. е. термодинамического, тела. Следовательно, термодинамическая температура 0 является не эмпирической, а универсальной температурой. Термодинамическая температурная шкала является равномерной шкалой. Это вытекает уже из соотношения (3-6) и вполне может быть уяснено из рассмотрения последовательного ряда п машин Карно, каждая из которых характеризуется одной и той же величиной троизводимой работы L, а тепло, выделяемое одной машиной, поглощается другой (рис. 3-7). В таком ряду (нижняя машина имеет номер 1, а верхняя — п)  [c.67]

Между тем это доказательство иллюзорно. На самом деле независимость ц от у — это, как мы отмечали в гл. 2, самостоятельное, особое свойство идеального газа, никак не связанное с другим его свойством — тем, что идеальный газ подчиняется уравнению Клапейрона. В гл. 3 независимость внутренней энергии идеального газа от объема была использована для доказательства идентичности температурной шкалы идеального газа и абсолютной термодинамической шкалы Кельвина. Именно доказанность этой идентичности позволяет нам использовать уравнение Клапейрона в любых термодинамических расчетах. Таким образом, то обстоятельство, что (duldv) i =0, уже заложено в уравнение Клапейрона при произведенной в этом Уравнении замене идеально-газовой температуры абсолютной термодинамической температурой (см. 3-5), и, следовательно, приведенное выше доказательство лишь еще раз фиксирует этот заранее известный факт.  [c.114]

Темп-ра является количеств, характеристикой теплового равновесия темп-ры тел. находящихся в равновесии друг с другом, равны между собой. На этом основано измерение темп-ры при помощи термометра. В качестве термометра можно взять любое тело, термодинамич. параметры к-рого зависят от темп-ры. Определение температурной шкалы не однозначно и зависит от способа градуировки термометра. Об1пепринятой является Кельвина шкала темп-ры, в соответствии с к-рой темп-ра Т измеряется в градусах Кельвина. При взаимодействии двух тел. имеющих разл. темп-ру, происходит процесс установления равновесия между ними, сопровождающийся теплопередачей. При этом кол-во теплоты, отданное одним телом, равно кол-ву тетиюты, приобретённому другим. На этом основано количеств, измерение переданной теплоты при помощи калориметра, к-рый служит источником или стоком тепла, В качестве калориметра можно использовать любое тело, термодинамич. параметры к-рого зависят от кол-ва переданной ему теплоты,  [c.84]

Степень приближения Международной практической температурной шкалы к термодинамической определяется тем, что вонпервых, числовые значения первичных, а также и вторичных постоянных точек практической шкалы получены в результате газотермических измерений, т. е. с некоторыми погрешностями, а во-вторых, тем, что выше точки затвердевания золота измерения основаны на термодинамическом методе (методе оптического пирометра), в котором связь между измеряемой температурой и яркостью тела устанавливается в соответствии с законом Планка. Однако на других участках практической шкалы от —182,97 до ЮбЗ С температура определяется по показаниям платинового термометра сопротивления или платинородий-платиновой термопары, шкалы которых не совпадают с термодинамической шкалой в промежутках между реперными точками. Некоторые данные о расхождениях между этими шкалами приведены в Положении о Международной практической температурной шкале [2].  [c.71]

Как мы видели в разд. 11.4, принципиальную возможность определения термодинамической температуры Т любого теплового резервуара в общем случае дает полностью обратимая ЦТЭУ, работающая между рассматриваемым и опорным резервуаром, находящимся при Та — 273,16 К. Для этого необходимо рассчитать величину Т по уравнению (11.2), воспользовавщись измеренными значениями Qt и Qd. Однако, поскольку полностью обратимая ЦТЭУ представляет собой некоторую термотопическую установку и не может быть реализована, единственной точно известной температурой является тройная точка воды, использованная для определения кельвина. Следовательно, для выражения в кельвинах любой другой температуры можно получить лишь некоторую наилучшую оценку (это делается путем одновременного использования теории и эксперимента, см. гл. 18). По этой причине в практических целях необходимо установить некоторую практическую температурную шкалу, в которой, по международному соглашению, целому ряду точно воспроизводимых температур приписывается определенное число кельвин (такие температуры называются фиксированными точками). При этом должны быть определены также методы интерполяции, позволяющие находить промежуточные значения температуры. Для численного выражения температуры в заданной фиксированной точке используется то значение, которое по международному соглашению считается наилучшей оценкой истинной термодинамической температуры на данный период. Последнее такое соглашение, достигнутое в 1968 г., заменило соглашения от 1948/1960 гг. Улучшенное издание шкалы 1968 г. было выпущено в 1975 г., однако при этом были сделаны лишь незначительные уточнения, которые не привели к изменениям температур, измеренных по шкале 1968 г.  [c.156]


Несмотря на условность определения Тк, эта характеристика во многих случаях с достаточной для инженерных целей точностью разделяет температурную шкалу на две области. При температурах ниже критической материал не может надежно работать, если действуют ударные нагрузки. Прп температурах выше критической надежность резко возрастает, причем чем больше рабочая температура превышает критическую, тем меньше опасность хрупкого разрушения, которое может быть вызвано наличием более острого (чем у образцов) надреза или действием других охрунчивающих факторов.  [c.42]

Осп. компонентом С. является железо,поэтому атомы др. элементов ориентируются по его кристаллич. ревзетке. Для С, свойственно присущее железу явление полиморфизма, характеризуюш,ееся тем, что кристаллич. решетка меняет свое строение при пагреве или охлаждении. Для чистого железа известна кубич. объемноцентрированная кристаллич. решетка, т. н. а-железо (при высоких темн-рах б-железо), и другая кубич. гранецентрированная решетка, т. н. -н елезо. Темн-ра перехода одной кристаллич. решетки железа в другую (910° и 1390°) получила назв. критич. точек. В связи с влиянием примесей (в первую очередь углерода) критич. точки С. сдвигаются по температурной шкало и положение их зависит от хим. состава. Впервые критические точки С. были открыты рус. ученым Д. К. Черновым, разработавшим основы совр. металловедения.  [c.196]

Теперь остается лишь установить значение константы кв-Из соотношения (4.4.8) видно, что она должна обладать размерностью знтроиии (т. е. энергия на градус). Нужно найти такое ее значение, чтобы все термодинамические соотношения согласовывались друг с другом. Как известно, определение температурной шкалы в классической термодинамике связано (посредством понятия о газовом термометре) с законами идеального газа. В гл. 5 (разд. 5.2) показано, что уравнение состояния классического идеального газа, получаемое из канонического ансамбля, имеет вид  [c.147]


Смотреть страницы где упоминается термин Другие температурные шкалы : [c.136]    [c.29]    [c.49]    [c.376]    [c.339]    [c.598]    [c.190]    [c.51]    [c.449]   
Смотреть главы в:

Справочник по Международной системе единиц Изд.3  -> Другие температурные шкалы



ПОИСК



Температурная шкала

Температурные шкалы-г-см. Шкалы

Температурные шкалы-г-см. Шкалы температурные

Шкалы



© 2025 Mash-xxl.info Реклама на сайте