Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость круговых цилиндрических панелей

УСТОЙЧИВОСТЬ КРУГОВЫХ ЦИЛИНДРИЧЕСКИХ ПАНЕЛЕЙ  [c.86]

Уравнения (4.5.1), (4.4.4) — (4.4.6), (4.5.2), (4.4.9) составляют полную систему зависимостей, на основе которых могут быть получены решения задач об устойчивости равновесия цилиндрической панели (только эта задача и будет рассматриваться) и круговой арки. Решение задачи устойчивости начнем с преобразования уравнений нейтрального равновесия (4.5.1), в которых й, iv  [c.124]


Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

Круговая цилиндрическая панель со сторонами а, 6, сжатая вдоль образующей равномерно распределенными усилиями р. В результате исследования устойчивости в малом с применением теории деформаций получаем следующее выражение для сжимающего усилия [1]  [c.202]

Устойчивость пологой ортотропной цилиндрической панели. Рассмотрим задачу статической устойчивости пологой ортотропной круговой цилиндрической панели (7 1=со, Н2=Н), сжатой вдоль образуюш их равномерно распределенной нагрузкой  [c.355]

Из формул (3.22) и (3.23) нетрудно получить ранее найденные формулы для определения частоты колебаний (1.14) и критической силы статической устойчивости (2.8) круговой цилиндрической панели. Таким же образом могут быть найдены указанные расчетные величины для различных типов пологих ортотропных слоистых оболочек.  [c.383]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]


Устойчивость длинной цилиндрической круговой панели  [c.123]

В качестве примера рассмотрим задачу устойчивости слоистой длинной цилиндрической круговой изотропной жестко защемленной панели радиуса R и толщины Л, нагруженной равномерно распределенным давлением интенсивности Р. В параграфе 4,5 получено аналитическое решение этой задачи сравнение установленных там результатов с результатами, полученными по методу инвариантного погружения позволит оценить практическую пригодность и эффективность последнего. Как показано в параграфе 4.5, исследование устойчивости длинной цилиндрической жестко защемленной панели сводится к интегрированию системы дифференциальных уравнений (4.5.5) при краевых условиях (4.5.6). Эти уравнения и условия представим в матричной форме  [c.208]

Представления (7.4.64) обозримы, легко реализуются на ЭВМ и вместе с соотношениями (7.2.14), (7.2.28), (7.4.61), (7.4.65) позволяют эффективно вычислять матрицу Грина линейной краевой задачи (7.4.1), (7.4.56). В качестве примера их использования вновь рассмотрим задачу об устойчивости равновесия слоистой длинной цилиндрической круговой жестко защемленной панели радиуса R и толщины h, нагруженной равномерно распределенным давлением интенсивности Р. Вместе с краевой задачей на собственные значения (7.3.13), к интегрированию которой сводится исследование устойчивости панели, будем рассматривать ассоциированную с ней краевую задачу  [c.221]

Рассмотрим слоистую изотропную длинную круговую цилиндрическую панель радиуса R и толщины h, несущую поперечную нагрузку. Используем систему координат ip, у, Z, описанную в предыдущем параграфе. Примем, что длина панели достаточно велика, условия ее опирания и нагружения не зависят от координаты у и рассмотрим задачу о выпучивании панели по цилиндрической поверхности. Целесообразно одновременно рассматривать задачу об устойчивости круговой арки единичной ширины, которую будем представлять себе вырезанной" из панели двумя нормальными сечениями у = с, у = с+1 (с = onst). Уравнения этой задачи, как будет видно из дальнейшего, лишь значениями некоторых коэффициентов отличаются от уравнений выпучивания панели по цилиндрической поверхности. Уравнения нейтрального равновесия получим из уравнений (3.5.10), в которых следует учесть, что для обеих рассматриваемых конструкций вариации составляющих тензора напряжений равны нулю.  [c.123]

Задача о сжатии круглой пластины рассмотрена Л. А. Толоконниковым (1959) с учетом деформации и смещений основного состояния. Показано, что зависимость критического давления от относительной длины не является монотонной и однозначной. При этом существует предельное отношение толщины к радиусу, при достижении которого пластина перестает терять устойчивость. Тем же методом найдены критические нагрузки для кольцевой пластины, круговой цилиндрической оболочки и цилиндрической панели при действии поперечного давления (Г. Б. Киреева, 1961, 1966).  [c.78]

Динамику выпучивания пластин и оболочек, как правило, следует рассматривать в нелинейной постановке. Исследование сводится к интегрированию уравнений типа (7.1) с инерционными членами при ненулевых начальных условиях или соответствующих уравнений с дополнительными членами, которые учитывают начальные несовершенства и т. п. В такой постановке поведение цилиндрических оболочек и панелей было впервые исследовано В. А. Агамировым и А. С. Вольмиром (1959), а такнсе Г. А. Бойченко, Б. П. Макаровым, И. И. Судаковой и Ю. Ю. Швейко (1959). Первая группа авторов рассматривала нагружение круговой цилиндрической оболочки силами, возрастающими во времени. Решая задачу Коши на электронной вычислительной машине, они установили значение нагрузки, соответствующей наибольшей скорости нарастания прогибов. Это значение авторы назвали динамической критической нагрузкой . Вторая группа авторов рассматривала внезапное нагружение упругой цилиндрической панели силами, значения которых затем уменьшаются во времени до нуля. При этом оказалось возможным сформулировать задачу устойчивости. Для некоторого класса задач на плоскости параметров была построена область, соответствующая устойчивости начальной формы панели. В последние годы изучение динамического выпучивания пластин и оболочек велось широким фронтом обзор этих работ дан в книге  [c.352]


Решение стохастических задач для распределенных нелинейных систем встречает серьезные математические трудности. Поэтому обычно распределенную систему заменяют эквивалентной в некотором смысле системой с конечным числом степеней свободы. Одна из задач состоит в отыскании распределения критических сил по заданному распределению пара-метроё начальных возмущений. Пусть известна детерминистическая связь между критическим параметром и параметрами возмущений щ, и ,. . ., UJn Тогда при некоторых ограничениях (В. В. Болотин, 1958) плотность распределения вероятности р (Р ) может быть выражена через совместную плотность р (щ, и ,. . ., Мт)- Этот метод был применен для анализа распределения критических сил пологой цилиндрической панели, нагруженной осевыми давлениями. Вычисленные значения математических ожиданий и дисперсий оказались близки к опытным значениям. Б. П. Макаров (1962, 1963) и В. М. Гончаренко (1962) рассмотрели ряд других случаев осевое и гидростатическое сжатие круговой цилиндрической оболочки, гидростатическое сжатие цилиндрической панели и др. Б. П. Макаров (1962) и А. С. Вольмир (1963) произвели статистическую обработку экспериментальных данных по испытаниям оболочек на устойчивость в частности, Б. П. Макаров (1962) исследовал экспериментальные данные с точки зрения высказанной им гипотезы о возможности бимодальных распределений критических сил.  [c.358]


Смотреть страницы где упоминается термин Устойчивость круговых цилиндрических панелей : [c.128]    [c.219]    [c.205]    [c.99]   
Смотреть главы в:

Устойчивость и колебания трехслойных оболочек  -> Устойчивость круговых цилиндрических панелей



ПОИСК



Круговые панели

Панели Устойчивость

Панель

Устойчивость длинной цилиндрической круговой панели

Устойчивость цилиндрических



© 2025 Mash-xxl.info Реклама на сайте