Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вынужденные и резонансные колебания роторов

Соотношение между входной динамической жесткостью рамы в местах установки подшипников и масляного слоя влияет на колебания системы в целом только в окрестности резонансных частот. Вдали от резонансных частот подсистемы ротор и рама могут рассматриваться как несвязанные. Так, для рассмотренного в 3.4 турбогенератора варьирование жесткости рамы в пределах +15% не оказывало влияния на формы и амплитуды вынужденных колебаний ротора на частоте 50 Гц, хотя существенно сказывалось на формах колебаний рамы, и наоборот, варьирование жесткости ротора не влияло на амплитуду вынужденных колебаний рамы.  [c.158]


Вести расчет на вынужденные и даже резонансные колебания системы ротор — корпус затруднительно в силу следующих причин  [c.190]

Это решение соответствует вынужденным колебаниям объекта в направлении координат т и вызванным неуравновешенностью ротора. При выполнении резонансных соотношений = ш /4 +  [c.110]

Рассматривая вынужденные колебания легких неуравновешенных роторов, было получено [2], что резонансные амплитуды цапфы а и центра массы ротора у имеют конечную максимальную величину  [c.121]

Воздействие смазочного слоя на ротор носит двоякий характер. С одной стороны, смазочный слой демпфирует вынужденные колебания роторов, снижает амплитуды резонансных колебаний, смещает максимумы резонансных пиков, создает дополнительные резонансы с другой стороны, смазочный слой является причиной самовозбуждающихся колебаний, возникающих в зависимости от конструкции и условий работы  [c.302]

Вынужденные колебания вызываются неуравновешенными центробежными нагрузками Их частоты равны или кратны частотам вращения роторов. Маятниковые резонансные колебания обычно низкочастотные и опасности не представляют.  [c.284]

При работе штамповочного пресса резонирует и металл, из которого сделан пресс, и обрабатываемый металл, а часто еще пол под прессом. Когда работает циркулярная пила, удары между зубьями и обрабатываемым материалом, а также аэродинамический шум, создаваемый взаимодействием ротора и неподвижных элементов, возбуждают вынужденные резонансные колебания в диске пилы, который, вообще говоря, очень похож на оркестровую тарелку. Практически всегда, когда удар вызывает достаточно громкий шум, это значит, что где-то имел место резонанс. Если ударить ладонью по стене, воздушное пространство, остающееся между незначительным углублением ладони и стеной, ведет себя как резонатор Гельм-  [c.108]

Прп совпадении частоты собственных колебаний лопатки с частотой вынужденных колебаний (возмущающих сил) наступает резонанс. При этом амплитуды колебания лопатки увеличиваются, и может произойти усталостное ее разрушение. Зоны резонансных колебаний лопаток могут быть довольно точно установлены. Для этого в лабораторных условиях определяют частоту собственных колебаний по методике, данной в работах [43] и [53]. Зная частоту собственных колебаний лопатки, можно построить частотную диаграмму и определить числа оборотов ротора, при которых наступают резонансные колебания лопатки. На фиг. 73 и 74 приведены частотные диаграммы лопаток турбокомпрессоров ТК-30 и ТК-34, где по оси абсцисс отложено число оборотов ротора (ге об/мин), а по оси ординат — частоты собственных колебаний лопаток (/ 1/сек).  [c.98]


Из приведенных данных следует, что возможность возникновения резонансных любого из основных видов колебаний фундаментов под турбоагрегаты практически совершенно исключается. Что же касается вынужденных колебаний высших видов, то в предыдущем издании книги было показано, что даже в условиях резонанса такие колебания не могут превышать требуемых нормами пределов, если агрегат исправен и вызываемые его роторами неуравновешенные силы не превышают указанных на стр. 110.  [c.140]

Амплитуды вынужденных колебаний — величины прогибов роторов, усилия на его опоры и колебания двигателя в целом — достигают больших величин и становятся особо опасными для надежности ротора и многих других деталей двигателя, когда наступает явление резонанса, т. е. когда частоты возмущающих силовых или кинематических факторов становятся равными частотам собственных колебаний ротора. Резонансные колебания возникают на различных частотах вращения роторов.  [c.352]

В настоящее время обычно определяются только резонансные частоты амортизированного насоса и первая собственная частота ротора. Исследования показывают, что в ряде случаев, особенно в многоступенчатых центробежных насосах, расчеты графо-ана-литическим методом [89] приводят к существенно завышенным значениям собственных частот. В связи с этим рекомендуется использовать более точные методы [19, 94]. При этом целесообразно рассчитывать несколько первых собственных частот ротора и не допускать их близости как к частоте вращения, так и к лопастной частоте. На практике наблюдались случаи усиленной вибрации роторов с лопастной частотой при невыполнении этого условия. Наиболее полные методы расчета системы ротор—корпус на свободные и вынужденные колебания изложены в работах [128, 1291.  [c.177]

На рис. 41 изображены амплитудные характеристики для жесткого ротора (А = оо) при прямом вращении вибратора и при трех значениях параметра устойчивости В = Лсо /g [одно из них (В = 3,9) соответствует границе устойчивости, частота самовозбуждающихся колебаний на границе Л/w = 0,51). Из рис. 41 следует, что на границе устойчивости при частоте внешней нагрузки, совпадающей с частотой самовозбуждающихся колебаний, амплитуды вынужденных колебаний становятся неограниченно большими (в линейной постановке), несмотря на наличие в системе демпфирования. Для значений параметра В, отличных от В , колебания вблизи б/w = 0,5 также носят резонансный характер. Учитывая это, а также то, что вблизи границы устойчивости частота автоколебаний близка к половине частоты вращения, можно утверждать, что частота w/2 в определенном смысле является собственной частотой жесткого ротора.  [c.172]

Колебания неуравновешенных роторов. Нелинейные свойства подшипников качения вносят особенности в характер вынужденных колебаний неуравновешенных роторов. Так, в частности, вид амплитудных кривых зависит от величин неуравновешенности и статической нагрузки. Контактная податливость в случае жестких массивных роторов существенно понижает критические скорости, причем резонансные пики могут раздваиваться.  [c.174]

Различают два вида вынужденных резонансных колебаний роторов и двигателей роторные колебания, когда частоты колебаний равны частотам вращения одного из роторов двигателя, нероторные колебания, имеющие другие различные частоты.  [c.352]

Вал представляет собой упругую деталь, объединяющую рабочее колеса и ротор генератора, и должен обеспечивать статическую и динамическую прочность агрегата при всех режимах работы. Прочность вала может быть достаточной в рабочих, переходных и разгонном режимах, если собственная частота колебаний ротора в этих режимах не будет совпадать или не окажется близкой к частоте вынужденных ко/ебаний. Расчет на колебания позволяет определить собственные частоты и, соЕоставив их с вынужденными, оценить, как далеко от резонансных явлений находится система.  [c.201]


Крутильные колебания вала возникают из-за наличия неуравновешенных маховых масс и моментов на роторе генератора, гидродинамических сил и масс на рабочем колесе и нарастают вплоть до резонансных при совпадении собственной частоты колебаний системы с частотой вращения вала или других вынужденных частот. Baj[ является упругим звеном, связывающим ротор генератора с рабочим колесом, и, как при поперечных колебаниях, в значительной мере опредёляет собственную частоту этой системы.  [c.203]

В отлич ие от опасных вынужденных (резонансных) колебаний, возбуждаемых окружной стационарной неравномерностью, частота которых кратна частоте вращения ротора, проявление автоколебаний возможно и более вероятно с частотами, не кратными ей. Это может быть их отличительным признаком. Однако не исклк>чено, как подтверждает опыт, совпадение частоты автоколебаний с одной из частот, кратных частоте вращения. Поэтому в подобных случаях идентификация характера динамического процесса по спектрограмме (осциллограмме) отклика, получен-го на данном режиме работы турбомашины, связана с опреде-ннымп затруднениями. Задачу идентификации облегчает получение спектрограммы на измененной физической частоте вращения ротора (при поддержании постоянства приведенной частоты). Из.менеиие частоты влечет скольжение расположения узкополосных всплесков, соответствующих спектрограмме отклика возбуждению окружной стационарной неравномерностью, вдоль оси частот, тогда как узкополосные составляющие, которые соответствуют автоколебательному процессу, оказываются привязанными к резонансным пикам отклика на шум и своего положения на оси частот практически не изменяют (если и изменяют, то сообразно с влиянием вращения на собственные частоты).  [c.202]

Эффективным средством, способствующим идентификации автоколебаний в слол<ных условиях, является фазовый анализ колебаний рабочего колеса. В работах [29, 54] (см. гл. 8, п. 6) обращено внимание на то, что при а Втоколебаниях компрессорных рабочих колес более вероятна форма потери устойчивости в виде вперед бегущих относительно них волн. В этом случае относительный сдвиг фаз колебаний любой nap J соседних лопаток Ay= = Y +i—Ук должен быть отрицательным. Напротив, при возбуждении вынужденных резонансных колебаний как окружной стационарной неравномерностью потока, так и вращающимся срывом, имеющим частоту В1ращения меньшую, чем частота вращения ротора, сдвиг фаз будет положительным. Учет этого обстоятельства способен облегчить идентификацию автоколебаний.  [c.202]


Смотреть главы в:

Конструкция и проектирование авиационных газотурбинных двигателей  -> Вынужденные и резонансные колебания роторов



ПОИСК



Вынужденные колебания роторов

Колебания вынужденные

Колебания резонансные

Резонансные

Ротор



© 2025 Mash-xxl.info Реклама на сайте