Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разбавление

Следует, однако, заметить, что имеются молекулярные соображения, на основании которых можно предположить, что в очень слабых растворах полимеров могут наблюдаться напряжения, которые зависят как от истории деформирования, так и от мгновенного значения скорости деформации, причем проявление вязкостных свойств в поведении материала связано с влиянием растворителя. Этот вклад не пренебрежимо мал ввиду крайне низкой концентрации полимера. Таким образом, уравнение (6-4.47) может быть, вероятно, использовано главным образом применительно к разбавленным растворам полимеров.  [c.245]


Влияние какой-либо упругости, которой жидкость может обладать в заданном поле течения, зависит от того, как велико Л и как мал некоторый характерный временной масштаб течения. В турбулентных течениях этот временной масштаб фактически очень мал [23], и значительные аномалии поведения наблюдаются даже для лишь слегка упругих жидкостей, таких, как разбавленные растворы полимеров [24]. Фактически в качестве характерного временного масштаба турбулентного течения можно взять  [c.280]

Перед тем как начать обсуждение исследований турбулентных течений, уместно привести феноменологическое описание наблюдаемого поведения. Наблюдаемый перепад давления при турбулентном течении разбавленных растворов полимеров в круглых трубах часто является неожиданно более низким, чем тот, который наблюдался при той же самой расходной скорости чистого растворителя, несмотря на то что вязкость раствора больше вязкости чистого растворителя. Это явление известно как явление снижения сопротивления. Аналогичное явление наблюдается и при обтекании погруженных тел, если полимер инжектируется в пограничный слой.  [c.281]

Рис. 7-1. Снижение сопротивления в разбавленных растворах. Рис. 7-1. Снижение сопротивления в разбавленных растворах.
При принятом выше определении числа Рейнольдса типичное поведение, наблюдаемое у разбавленных растворов, проиллюстрировано на рис. 7-1, хотя в литературе указывались и другие типы зависимости [27, 28]. При равных числах Рейнольдса коэффициент трения зависит от диаметра трубы, достигая ньютоновского значения при очень больших диаметрах. Для более концентрированных растворов часто наблюдается поведение, иллюстрируемое на рис. 7-2. Здесь еще чувствуется влияние диаметра, но переход от ламинарного течения к турбулентному обнаружить нелегко, хотя, вообще говоря, можно различить небольшой изгиб вблизи точки Re = 2100.  [c.283]

Описанные выше качественные результаты, по-ви-димому, справедливы для высококонцентрированных дисперсных систем. Однако использование уравнения переноса излучения для таких систем по аналогии с гомогенными и разбавленными дисперсными системами обусловлено возможностью применения понятия однородного объема, характеризуемого некоторыми оптическими параметрами [46, 162]. Малый объем можно считать элементарным, если количество поглощенного и рассеянного излучения пропорционально его величине [162]. Интенсивность внешнего излучения должна оставаться приближенно постоянной в пределах этого объема, а количество содержащихся в нем частиц должно быть достаточным для статистически достоверного описания его характеристик средними величинами [162].  [c.145]


Перенос фонового излучения описывается по-преж-нему системой уравнений (4.18). Решение ее с учетом (4.25) позволяет определить все компоненты потока излучения в ячейке. Как оказалось, взаимное влияние соседних сфер быстро уменьшается по мере разбавления системы и снижения отражательной способности. Уже при можно считать, что частицы излучают  [c.156]

Рассмотрим сильно упрощенную, однако важную систему, содержащую Пл молекул компонента А и Пд молекул компонента В. Предположим, что молекулы двух компонентов одинаковых размеров, так что каждая молекула А находится в непосредственной близости к а окружающим молекулам и каждая молекула В также находится в непосредственной близости к а окружающим молекулам. Если раствор очень разбавлен по отношению к компоненту В (т. е. Пв < Лд), большинством молекулярных контактов будут контакты Л — Ли раствор будет приближаться по своему поведению к идеальному со свойствами, близкими к свойствам чистого компонента А. Подобно этому, если раствор очень разбавлен по отношению к компоненту А (т. е. С пд), то большинством молекулярных контактов будут контакты В — В и раствор будет приближаться по своему поведению к идеальному со свойствами, близкими к свойствам чистого компонента В. Таким образом, отклонение от поведения идеального раствора будет наблюдаться Б области, где заметную роль играет число контактов А — В, и в первом приближении избыток свободной энергии можно принять пропорциональным числу контактов между молекулами А и молекулами В  [c.258]

Участки металла, соприкасающиеся с более разбавленным раствором, при установлении искаженного обратимого электродного потенциала являются анодами  [c.189]

Теория строения двойного электрического слоя приводит к выводу, что в разбавленных растворах кислот, не содержащих посторонних электролитов  [c.254]

Рис. 195. Схема опыта, при помощи которого Тиль установил явление разностного эффекта при анодной поляризации цинка, растворяющегося в разбавленной кислоте Рис. 195. Схема опыта, при помощи которого Тиль установил явление <a href="/info/469364">разностного эффекта</a> при <a href="/info/39580">анодной поляризации</a> цинка, растворяющегося в разбавленной кислоте
Эффективная энергия активации при концентрационной поляризации, т. е. при диффузионном контроле процесса, представляет собой энергию активации вязкого течения раствора, которая для разбавленных водных растворов близка к энергии активации вязкости воды (табл. 50).  [c.353]

В таком концентрационном элементе, согласно формуле Нернста, более отрицательным является электрод, соприкасающийся с более разбавленным раствором, а более положительным— соприкасающийся с более концентрированным раствором.  [c.28]

В первом случае коррозионные процессы получили название коррозии металлов с водородной деполяризацией, во втором— коррозии металлов с кислородной деполяризацией. Иногда оба катодных деполяризующих процесса протекают одновременно и параллельно, например при коррозии железа в разбавленных растворах серной или соляной кислоты в присутствии растворен-  [c.38]

Необходимое содержание хрома в хромистых сталях определяется также агрессивностью среды. Так, в холодной разбавленной азотной кислоте хромистые стали с 13—15% Сг обладают достаточно высокой химической стойкостью, а в горячей кислоте они непригодны. В этих условиях пригодны стали, содержащие в твердом растворе не менее 23,7% масс. Сг, что соответствует второму порогу устойчивости. При третьем пороге устойчивости (около 35,87о масс. Сг) хромистые стали обладают достаточной  [c.214]

Коррозионная с т о Г1 к о с т ь х р о м о н и к е л е в ы х, сталей (как и хромистых) обусловлена в основном образованием на поверхности сплава защитной пассивной пленки однако хромоникелевые стали обладают несколько более высокой коррозионной стойкостью, чем хромистые стали. Объясняется это наличием в сплаве никеля, который способствует образованию мелкозернистой однофазной структуры и повышает стойкость стали в разбавленных растворах серной кислоты, а также,-в ряде водных растворов солей.  [c.226]


Рис. 172. Зависимость потери массы меди а разбавленных кислотах при комнатной температуре от концентрации растворенного кислорода Рис. 172. Зависимость <a href="/info/251112">потери массы</a> меди а разбавленных кислотах при комнатной температуре от концентрации растворенного кислорода
Свинец стоек в растворах аммиака, в концентрированной уксусной и хлоруксусной кислотах, в жирных кислотах (в отсутствие кислорода), в щавелевой и винной кислотах (также в отсутствие кислорода). В разбавленной уксусной и муравьиной кислотах в присутствии кислорода свинец сильно корродирует.  [c.264]

Алюминий стоек в разбавленной серной кислоте, в концентрированной при 20° Сив высокопроцентном олеуме при температуре 200° С. В частности, в производстве. хлорсульфоновой кислоты аппаратура для разложения олеума может быть изготовлена из алюминия. Наиболее опасными для алюминия являются средние концентрации серной кислоты (рис. 183).  [c.268]

Нитриды неметаллов — бора и кремния — отличаются исключительно высокой коррозионной стойкостью. На карбид бора не действуют при температуре кипения разбавленные и концентрированные минеральные кислоты, растворы окислителей, щелочей и др. (табл. 32). На нитрид кремния не действует серная, соляная, азотная и фосфорная кислоты, не действуют хлор и сероводород при 1000° С. Изделия из нитрида бора стойки против окисления Fia воздухе при 700° С до 60 ч, при 1000° С до 10 ч, в хлоре при 700°С до 40 ч. Концентрированная серная кислота при комнатной температуре не действует на изделия из нитрида бора в продолжение семи суток концентрированные фосфорная, плавиковая и азотная кислоты действуют очень слабо.  [c.297]

Наиболее агрессивные химические вещества — крепкие и разбавленные кислоты, концентрированные растворы щелочей, самые сильные окислители — не оказывают на фторопласт-4 щ(какого действия даже при высоких температурах. На  [c.430]

В обоих случаях получается, что вязкость не зависит от скорости сдвига. Это неправильный результат для большинства (если не для всех) полимерных материалов однако если рассматривать поведение очень разбавленных растворов или не слишком большие скорости сдвига, то результат оказывается приемлемым. Из уравнения (6-3.1) следует, что разность вторых нормальных напря-  [c.217]

Соляная кислот aji При комнатной температуре устойчива только сталь ЭИ943, но лишь в разбавленной кислоте (5%>.  [c.497]

Впервые этот эффект был установлен в опыте по определению скорости выделения водорода над цинковым электродом при растворении цинка в разбавленной НС1 (рис. 195). Выделение водорода на цинке уменьшается Ко -> Ki, если цннк анодно поляризуется в случае его контактирования с платиной, причем уменьшение выделения водорода приблизительно пропорционально наложенному анодному току  [c.290]

В неокислительных агрессивных средах защитная пленка на поверхности хромистых сталей не образуется. Этим объясняется то, что в соляной и разбавленных растворах серной кислоты эти стали неустойчивы. В отличие от азотной кислоты, в иеокислительных кислотах при упеличении процентного содержания хрома в сплаве его устойчивость не только не увеличивается, но наблюдается даже ускорение коррозии.  [c.215]

И других средах, содержащих ионы-активаторы (хлор-ион и др.). Добавка меди существеиш) улучшает коррозионную стойкость аустенитной стали н серной кислоте невысоких концентраций (рис. 164), о.тнако добавка только меди недостаточна для полной пассивации стали при невысоких температурах п разбавленной кислоте. Болес эффективные результаты получаются при совместном легировании стали медью и молибденом.  [c.230]

Хромистые чугуны обладают высокой коррозионной стойкостью в окислительных средах. В холодной азотной кислоте, как в разбавленной, так и в концентрированной, хромистые чугуны стойки. В концентрированной горячей кислоте коррозионная стойкость хромистых чугунов значительно ниже стойкости стали типа Х18Н9. В 70%-ной фосфорной кислоте, в нитрозилсер-ной кислоте, в уксусной кислоте, в растворах солей, в том числе и в хлористых, в большинстве органических соединений (не являющихся восстановителями) хромистые чугуны не подвергаются коррозии. Они также отличаются стойкостью к некоторым расплавленным металлам (алюминий, свинец).  [c.244]

Эти бронзы стойки в разбавленных растворах кислот, не яв-ляюищхся окислителями, в том числе соляной, фосфорной, ук-суснс й, лимонной и многих других органических кислотах.  [c.251]

В концентрированных растворах едких щелочей стойкость никеля обусловлена защитной гидроокисной пленкой так, при концентрации едкого натра до 50% скорость коррозии не превышает 0,003 мм1год. В сухом аммиаке и в разбавленных растворах аммонийных солей никель стоек при нагревании и усилении доступа воздуха он нестоек.  [c.256]

Коррозионная стойкость олова в минеральных кислотах в большей степени зависит от присутствия воздуха. Особенно интенсивно корродирует олово в азотной кислоте. Корродирует оно также в H I и H2SO4 высокой концентрации, в то время как в разбавленных кислотах оно сравнительно устойчиво.  [c.265]

В минеральных кислотах— соляной, плавиковой— алкзминий не стоек. В азотной кислоте с увеличением концентрации раствора скорость растворения алюминия возрастает, достигает максимума, а затем уменьшается. Наибольшая скорость растворения алюминия в азотной кислоте наблюдается в пределах средних концентраций, наименьшая— в очень разбавленных растворах и в концент-  [c.268]


Сплавы системы Т1 — 2г представляют собой однофазный твердый раствор. При содержании Ъ% 7л наблюдается сильное упрочнение сплава при этом пластичность остается высоком. Коррозионная стойкость сплавов титана с цирконием в разбавленных растворах ИС1, Н2504 и др. тем выше, чем больше содержится в них циркония (рис. 194)-Так, в 15%-ном растворе НС1 при 60° С скорость коррозии титана в 2 раза выше скорости коррозии его сплава с 5% 2г и в 160 раз выше скорости коррозии сплава с 50% 2г. В 65%-ной НКОз прн 100° С, в концентрированной муравьиной кислоте при 40° С коррозионные потери сплава Т1—2г пс поевышают 0,004 г/(л2-ч).  [c.286]

Сплавы — N1 в разбавленных растворах серной кислоты при содержа.лнн никеля 3--5% имеют более высокую коррозионную стойкость, чем титан, а сплавы, содержащие 0,5 и 1,26% N1, ведут себя хуже. При этом увеличение концентрации серной кислоты от 1 до 4 н. почти не влияет на коррозионную стойкость пыаион с 3 и 5% N1, но увеличивает скорость коррозии сплавов с 0,5 II 1,26% N1.  [c.288]

Коицентрированиые кислоты и их смеси Разбавленные кислоты Водные растворы щелочей  [c.296]

Эпоксидные смолы после отверждения весьма устойчивы к ко[)розионному действию многих химических реагентов. Они противостоят воздействию соляной кислоты, разбавленной серной кислоты, растворов щелочей, воды и растворов иеоргапиче-ских солей вплоть до температуры 90° С. Из органических веществ спирты, хлорированные углеводороды, ароматические и алифатические углеводороды, а также фруктовые соки не оказывают влияния на эти смолы. При действии серной кислоты концентрации более 50%, азотной кислоты концентрации более  [c.407]

Перхлорвиниловая смола представляет собой полихлорвини-ловую смолу с повышенным содержанием хлора. В виде хлорбензольного концентрата она получается хлорированием 10— 12%-ного раствора поливинилхлоридной смолы в хлорбензоле с последующим высаживанием сухой смолы из хлорбензольного раствора. После хлорирования раствор выпаривают под ваку-умо.м до получения 40—50%-ного концентрата. Этот концентрат при разбавлении каким-либо органическим растворителем до 10—15%-ной концентрации даег лак, который образует механически прочные пленки, обладающие удовлетворительным сцеплением с покрываемой поверхностью. Добавка к концентрату пластификаторов необходима лишь для получения пленок с повышенной эластичностью. Высоковязкие смолы дают более эластичные и более атмосферостойкие пленки. Лак может наноситься распылением или кистью.  [c.418]


Смотреть страницы где упоминается термин Разбавление : [c.396]    [c.166]    [c.163]    [c.163]    [c.163]    [c.163]    [c.163]    [c.172]    [c.172]    [c.247]    [c.260]    [c.306]    [c.256]    [c.371]    [c.408]   
Смотреть главы в:

Прогноз качества воды водоёмов-приемников сточных вод  -> Разбавление



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте