Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие металла с азотом и водородом при сварке плавлением

Большим затруднением при сварке титана и его сплавов является высокая активность к кислороду, азоту, водороду и углероду в расплавленном и твердом состояниях при температурах выше 600°С. Для получения при сварке плавлением соединения хорошего качества необходимо полностью защищать свариваемые металлы от взаимодействия с воздухом и вредными примесями сварочной ванны и нагретых выше 600°С металлов основного и шва.  [c.14]


Работоспособность сварных соединений и сварных конструкций в целом во многом определяется качеством сварных швов. Вопросы надежности работы сварных конструкций в настоящее время приобретают все большее значение из-за их эксплуатации при высоких и низких температурах, в агрессивных средах, при больших рабочих напряжениях. При обработке материалов, в том числе и при сварке, практически всегда образуются различные дефекты. Вид дефектов и механизм их появления зависят от особенностей технологического процесса. При сварке плавлением образование дефектов определяется характером взаимодействия жидкого и твердого металлов, а также металлов с газами и шлаком. Жидкий металл растворяет определенное количество газов из воздуха и газообразных продуктов разложения электродного покрытия. Основными газами, влияющими на свойства металла и чаще всего присутствующими в металле, являются кислород, водород и азот. Водород физически растворяется в расплавленном металле, а кислород и азот с большим количеством металлов вступают в химическое взаимодействие. В процессе охлаждения вследствие снижения растворимости газов в металле происходит их выделение.  [c.228]

Одной из главных задач при сварке плавлением является предупреждение вредного воздействия воздуха на металл. Эта задача обычно решается с помощью газовой или шлаковой защиты зоны сварки. Благодаря такой защите предупреждается доступ воздуха и взаимодействие составляющих его азота и кислорода с жидким металлом. Существенную роль при сварке может также играть водород. Перечисленные газы при взаимодействии с металлом могут физически в нем растворяться или же реагировать с ним с образованием химических соединений. В первом случае металл поглощает теплоту, во втором обычно происходит выделение теплоты. Химические реакции в зависимости от растворимости в жидком металле образовавшихся соединений можно разделить на три подгруппы реакции, продукты которых хорошо растворимы в расплаве, реакции со средней их растворимостью и реакции, дающие нерастворимые соединения.  [c.96]

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛА С АЗОТОМ И ВОДОРОДОМ ПРИ СВАРКЕ ПЛАВЛЕНИЕМ  [c.216]

При дуговой сварке плавлением расплавленный металл, взаимодействуя с окружающей атмосферой, поглощает кислород, азот и водород, что существенно сказывается на свойствах металла щва.  [c.67]

Загрязнение металла шва. В зоне плавления электрической дуги температура достигает больших значений — 2300°С, что приводит к быстрому плавлению электродного металла и металла изделия, интенсивному разогреву, а потом достаточно быстрому охлаждению металла после сварки. Воздействие электрической дуги приводит к тому, что молекулы кислорода, азота, водорода, находящиеся в воздухе или влаге в зоне дуги, частично разлагаются на атомы и ионы. В атомарном состоянии эти элементы обладают высокой активностью, вступая в химическое взаимодействие с элементами расплавленной стали и растворяясь в ней, что является следствием хрупкости металла.  [c.141]


Сварка молибдена. Молибден имеет атомную решетку объемно-центрированного куба и аллотропических превращений не претерпевает вплоть до температуры плавления. Молибден инертен к водороду, устойчив против соляной, серной, плавиковой и фосфорной кислот, растворов щелочей, расплавов щелочных металлов, но растворяется в азотной кислоте и в расплавах щелочей. С кислородом начинает взаимодействовать с 673 К и интенсивно окисляется с 873 К- Молибден устойчив в среде чистого азота от температуры плавления до 1273 К- Нитриды молибдена диссоциируют до 1273 К- Промышленные сплавы молибдена имеют небольшие добавки (десятые доли процента) легирующих элементов циркония, титана, ниобия, тантала, образующих в этих количествах твердые растворы с молибденом. Анализ различных данных по диффузионной сварке молибдена показывает, что наилучшие результаты обеспечивает режим Т = 1973 К, р = 9,8 МПа, t — 5 мин. В соединениях, выполненных на этом режиме, в зоне стыка изменений структуры не наблюдается. Структура зоны соединения аналогична структуре основного металла, несплошности в стыке отсутствуют. Благоприятное влияние на свариваемость молибдена оказывает применение прокладок из основного металла с мелкозернистой структурой.  [c.155]

Стыковая сварка циркония, тантала, ниобия из-за высокой температуры плавления и активного взаимодействия с кислородом, азотом и частично водородом сопровождается растворением этих газов в металле и интенсивным горением расплавляемых частиц с появлением большого количества окислов в виде хлопьев и дыма. Эти металлы обычно сваривают стыковой сваркой в защитных камерах с нейтральным газом при отсосе образующихся окислов. При кратковременном нагреве ниобий и молибден можно сваривать без защиты. Сваривае.мость редких металлов зависит от способа их получения. Легко свариваются спеченные в вакууме, деформированные, отожженные мелкозернистые металлы.  [c.46]

В зоне сварки расплавленный металл, нагретый значительно выше точки плавления, способен поглощать кислород, водород и азот в количествах, заметно превышающих их концентрацию в затвердевающем металле. При кристаллизации сварочной ванны вследствие резкого падения растворимости происходит пересыщение маточного раствора Нг, О2 и N2. Эти газы в виде нерастворимых продуктов реакций взаимодействия между собой и другими элементами и соединениями стремятся выделиться из затвердевающего шва. И если условия газовыделения затруднены и имеются предпосылки для зарождения газовых пузырьков, то наплавленный металл может оказаться пораженным порами. Особенно вероятно образование пористости, если нерастворимые газообразные продукты реакций образуются непосредственно в кристаллизующемся металле шва, т. е. в конце сварочной ванны.  [c.25]

Сварка вольфрама. Вольфрам имеет две модификации — а и . Ниже температуры полиморфного превращения 903 К -фаза переходит в а-фазу с решеткой объемно-центрированного куба. Вольфрам устойчив в соляной, серной и других кислотах, в расплавленных натрии, ртути, висмуте. С азотом и водородом вольфрам не взаимодействует до температуры плавления. На воздухе устойчив до 673 К- Вольфрамовые сплавы содержат в небольших количествах такие легирующие элементы, как ниобий, цирконий, гафний, молибден, тантал, рений, окись тория. Основной целью легирования вольфрама является повышение его пластичности, так как технически чистый вольфрам при 293 К имеет относительное удлинение, близкое к нулю. Среди" тугоплавких металлов вольфрам имеет наиболее высокие следующие параметры температуру плавления, модуль упругости, коэффициент теплопроводности и низкую свариваемость. Для диффузионной сварки вольфрама в вакууме может быть рекомендован режим Т = 2473 К, р 19,6 МПа, /=15 мин, который обеспечивает свойства соединений, близкие к свойствам основного металла.  [c.155]

Высокая химическая активность в сочетании с низкой теплопроводностью, высоким электросопротивлением и температурой плавления, склонность к росту зерна в околошовной зоне определяют особенности сварки титана и его сплавов. Большая химическая активность титана при высоких температурах по отношению к азоту, кислороду и водороду затрудняет его сварку. Необходимым условием для получения качественного соединения при сварке титана плавлением является полная двухсторонняя защита от взаимодействия с воздухом не только расплавленного металла, но и нагретого выше 600°С основного металла и шва. При нагреве до высоких температур титан склонен к росту зерна-. Для устранения этого сварку следует выполнять при минимально возможной погонной энергии. Вследствие загрязнения металла сварного шва газами понижается его пластичность, что приводит к образованию холодных трещин. Загрязнение металла шва водородом можно предупредить, применяя электродную или присадочную проволоку, предварительно подвергнутую вакуумному отжигу. Содержание водорода в такой проволоке не превышает 0,004—0,006%. Большое влияние на качество сварного соединения оказывает состояние поверхности кромок и присадочного металла. Для удаления окиснонитридной пленки, образующейся после термообработки, ковки, штамповки, используют опеско-струивание и последующее травление в смеси солей с кислотами или щелочами.  [c.146]


Большинство пар свариваемых разнородных металлов или сплавов различается температурой плавления, плотностью, температурными коэффициентами линейного расширения, типом решетки и ее параметрами. Тугоплавкие и химически активные титан, ниобий, тантал, молибден при нагреве активно взаимодействуют с азотом и кислородом (при температуре выше 873 К), что ухудшает их свойства. Эти металлы и их сплавы, а также стали необходимо сваривать в вакууме не менее 6,7-10" Па, Медь (бескислородную), ниобий и молибден следует отжигать непосредственно перед сваркой в водороде при 873, 1673 и 1173 К в течение 30, 20 и 10 мин соответственно, а никель НП1 и сплав 29НК при 1123 и 1073 К в течение 15 и 30 мин.  [c.140]

Металлургические особенности сварки характеризуются процессами плавления и кристаллизации свариваемых металлов, протекающими в сварочной ванне, во взаимодействии с газами и шлаками. Отличительными особенностями процессов сварки от металлургических процессов, протекающих в плавительных печах, являются высокая температура сварочной дуги, малый объем расплавленного металла, кратковременность пребывания металла в жидком состоянии, быстрое изменение температурного режима. В этих условиях происходит интенсивное окисление элементов металла. Высокая температура сварочной дуги вызывает диссоциацию газов, т.е. распад молекул кислорода, азота и водорода на атомы  [c.35]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]

Титан получил широкое распространение благодаря своим особым свойствам малой плотности (4,5 г/см ), высокой температуре плавления (1665°С), высокой коррозионной стойкости во многих агрессивных средах, высокой прочности. Высокое электрическое сопротивление и низкая теплопроводность создают условия, при которых для сварки титана затрачивается значительно меньше электроэнергии, чем при сварке алюминия и даже стали. Кроме того, титан маломагнитен, и поэтому значительно снижается влияние магнитного дутья. Основной трудностью сварки титана и его сплавов является большая химическая активность титана при высоких температурах в отношении кислорода, азота и водорода. Поэтому для получения качественных соединений при сварке необходима хорошая защита от взаимодействия с атмосферой не только сварочной ванны, но и всей зоны металла, нагретого свыше 500°С.  [c.294]


Смотреть страницы где упоминается термин Взаимодействие металла с азотом и водородом при сварке плавлением : [c.151]    [c.16]   
Смотреть главы в:

Теория сварочных процессов  -> Взаимодействие металла с азотом и водородом при сварке плавлением



ПОИСК



Азот

Водород

Плавление

Плавление металлов

Сварка металла

Сварка плавлением

Сыр плавленый



© 2025 Mash-xxl.info Реклама на сайте