Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ракеты твердотопливные

Параметрические методы прогнозирования разработаны еще слабо. Ряд проблем в этой области связан с графическим представлением данных. Иногда параметрические зависимости удается представить в виде гистограмм или диаграмм. Так, в работе [122] приведена диаграмма прогнозирования максимальной рабочей температуры плавления тугоплавких металлов, из которых изготавливаются камеры сгорания твердотопливных ракет.  [c.66]


В некоторых задачах, решаемых поляризационно-оптическим методом, например в задачах определения термических напряжений в твердотопливных зарядах ракет, нагружение осуществляется очень медленно за сравнительно большой промежуток времени. Так как мгновенный модуль упругости материала модели не является определяющим, тарировочный образец в виде растягиваемой пластинки нагружают при комнатной температуре, оставляя его под нагрузкой на все время эксперимента. Температуру образца понижают ступенями, выдерживая его на каждой  [c.138]

Однако раздельно проблема космического полета и проблема реактивного движения привлекают внимание специалистов разных стран. К этому времени был накоплен немалый опыт в практическом использовании твердотопливных ракет, но их изначально низкая энергетическая эффективность вызывала необходимость создания новых схем реактивных двигателей. Этому способствовал также поиск двигательных установок для аэростатов и самолетов, интенсивно шедший в XIX в.  [c.435]

Сброшенный в скважину заряд взрывчатки вместе с балластом, счетчиком и небольшой твердотопливной ракетой, как камень, пошел сквозь мутный промывочный раствор ко дну. Акустический приемник на поверхности непрерывно контролирует ход аппарата, улавливая пулеметную дробь щелчков ролика по муфтовым стыкам. Вот из глубины донесся звук взрыва. Заряд сработал, продырявив трубу и проложив нефти путь из пласта в скважину. Отделился и стал падать на дно балласт, тянувший устройство вниз. Одновременно был подан электрический импульс на электровоспламенитель замедленного действия. Через несколько секунд вспыхнул заряд твердого ракетного топлива. Горячие газы устремились в сопло, и реактивная сила понесла аппарат вверх, к устью скважины. Щелкнули пружинные створки, громыхнул буфер — и вот аппарат уже забился в ловушке. Достаточно перезарядить его, и он снова готов к работе.  [c.139]

Составной частью двигательных установок твердотопливных ракет являются устройства отсечки или реверса тяги. В отличие от ЖРД, где принцип отсечки тяги прост и требует лишь  [c.94]

Рис. 134. Твердотопливный ускоритель ракеты-носителя Титан [186]. Рис. 134. Твердотопливный ускоритель <a href="/info/401007">ракеты-носителя</a> Титан [186].

ТВЕРДОТОПЛИВНЫЕ УСКОРИТЕЛИ РАКЕТЫ-НОСИТЕЛЯ АРИАН  [c.231]

Рис. 142. Твердотопливный ускоритель ракеты-носителя Ариан 3 с про Рис. 142. Твердотопливный ускоритель <a href="/info/401007">ракеты-носителя</a> Ариан 3 с про
Материалы с перекрестным армированием используют в конструкциях типа оболочек, в секциях крыльев, хвостового оперения и фюзеляжа самолетов. Из этих материалов производят плиты, трубы, корпуса ракет и твердотопливных двигателей, сосуды высокого давления, лопасти вертолетов, радиолокационные обтекатели, топливные баки, пресс-формы, изоляторы для электродвигателей и трансформаторов, футеровку емкостей для химического машиностроения и другие изделия для различных областей техники.  [c.289]

Материалы с перекрестным армированием используют в конструкциях типа оболочек, в секциях крыльев, хвостового оперения и фюзеляжа самолетов. Из этих материалов производят плиты, трубы, корпуса ракет и твердотопливных двигателей, сосуды высокого давления, лопасти вертолетов, радиолокационные обтекатели, топливные баки, пресс-формы, изоляторы для электродвига-  [c.317]

В [50, 51] сообщается о разработке гибридных трещинных элементов в напряжениях для трехмерных линейно-упругих тел. Гибридные трещинные элементы в напряжениях, предназначенные для исследования сквозных трещин в пластинах, подвергнутых воздействию поперечных нагрузок, при разработке которых была использована теория пластин четвертого порядка, описаны в работах [50—52], в то же время аналогичные элементы, при разработке которых была использована теория пластин шестого порядка, описаны в [52—54]. Кроме того, в [13, 55, 56] описаны гибридные трещинные элементы в напряжениях, предназначенные для исследования многослойных анизотропных материалов в этих элементах учитывается изменение коэффициентов К вдоль фронта трещины. Наконец, в [14, 15] описаны гибридные трещинные элементы в напряжениях, предназначенные для исследования поверхностных дефектов в почти или полностью несжимаемых материалах, таких, как заряды твердотопливных ракет.  [c.202]

Китай никогда не имел на вооружении значительных стратегических ядерных сил, и всегда заявлял о своей приверженности идее безъядерного мира и готовности последовать за другими ядерными государствами по пути его создания. В настоящее время, однако, Китай проводит программу модернизации своих ядерных сил. Он, в частности, разрабатывает твердотопливную мобильную межконтинентальную ракету DF-31, которая, возможно, будет оснащаться разделяющимися головными частями. Появление такой ракеты может существенно изменить характеристики ядерных сил КНР.  [c.447]

Сергей Королев попал в руки чекистов 27 июня 1938 года. Его обвинили в преступлениях, предусмотренных статьей 58 Уголовного кодекса РСФСР, пункты 7 и 11, в том, что он состоял членом антисоветской подпольной контрреволюционной организации и проводил вредительскую политику в области ракетной техники . Его обвиняли, например, в том, что он разрабатывал твердотопливную ракету 217 с целью задержать развитие более важных направлений что он сознательно препятствовал созданию эффективной системы питания для бортового автопилота ракеты 212 что он разрабатывал заведомо негодные двигатели. В результате через три месяца после ареста Военная коллегия Верховного суда СССР под председательством Ульриха приговорил конструктора к 10 годам тюремного заключения с поражением в правах на пять лет и конфискацией личного имущества.  [c.275]

Слева - схемы из патента США № 1103503 Ракетный аппарат (от 14 июля 1914 г.) а - многозарядная твердотопливная ракета, б - жидкостная двухкомпонентная ракета справа - схема из патента США № 1102653 Ракетный аппарат (от 7 июля 1914 г.), ступенчатая твердотопливная ракета  [c.335]

Значительно более детально и тщательно бьши проработаны наиболее оригинальные элементы конструкции. В частности, отделение боевой головки происходило без всякого механизма —за счет различия аэродинамических сил, и для надежности на корпусе включались две тормозящие твердотопливные ракеты. Для обоих компонентов использовался один несущий бак, разделенный на две емкости промежуточным днищем.  [c.411]


Ракета имеет активную радиолокационную систему наведения и оснащена твердотопливным комбинированным ракетно-прямоточным двигателем. Она выполнена по нормальной аэродинамической схеме с крылом малого удлинения. По бокам корпуса расположено четыре воздухозаборника круглого сечения, закрываемых сбрасываемыми в полете заглушками конической формы.  [c.401]

Ракета С-8 имеет твердотопливный двигатель и имеет различные комплектации боевой части.  [c.407]

В настоящее время ракеты решают самые различные задачи, от которых зависит радиус их действия. Исходя из решаемых задач, в ракетах могут применяться различные двигатели (жидкостные, твердотопливные, комбинированные и другие). Возникает своеобразная конкуренция этих типов двигателей, в связи с чем следует сравнить их по основным характеристикам.  [c.515]

Накопление заряда на корпусах твердотопливных ракет, приводящее к взрыву, исследовалось Фристромом и др. [239]. Они показали, что ракета на твердом топливе может действовать как генератор Ван дер Граафа вследствие накопления заряда, обусловленного присутствием заряженных частиц углерода и окиси алюминия в продуктах истечения из сопла. Было показано, что такое накопление заряда может привести к потенциалу 10 в.  [c.465]

Ожидают, что Спейс Шатл вытеснит целый ряд существующих носителей, используемых НАСА. Предполагается, что носитель Шатла будет образован твердотопливными ракетами, прикреп-  [c.123]

Ракеты, использующие бинарные жидкие топлива, где каждый компонент находится в отдельном резервуаре, в отношении сохранности на больших глубинах, по-видимому, не более надежны, чем твердотопливные двигатели. Уже па умеренных глубинах давление может разрушить резервуары, что приведет к быстрой утечке горючего и окислителя. При наличии большого количества воды в камере сгорания двигатели с самовоспламенением или с искровым зажиганием не срабатывают. В случае сохранных - резервуаров и исправной системы подачи топлива (насосами или под давлением) двигатели после высушивания мол<но использовать. Все сказанное справедливо также для двигателей, работающих па жидких однокомнонентных (унитарных) и гибридных топливах.  [c.506]

В 1915—1916 гг. Годдард впервые провел экспериментальные исследования со стальными камерами порохового ракетного двигателя с целью определения их КПД и скорости истечения. После завершения этих экспериментов Годдард создал окончательный вариант своей монографии, опубликованной Смитсонианским институтом в Вашингтоне в 1919 г. (вышла в свет в 1920 г.) [14]. Однако в этой публикации все вопросы теоретической космонавтики (как и применения жидкостных ракет) отошли на второй план. В том же 1920 г. Годдард представил в Смитеонианский институт доклад О дальнейшей разработке ракетного метода исследования космического пространства (опубликован в 1970 г. [6, с. 413—430]), в котором рассмотрены вопросы применения кислородно-водородного топлива, получения ионизированной реактивной струи, создания солнечнозеркальной энергетической установки и др. Начиная с 1917 г. Годдард занимался конструированием твердотопливной многозарядной (с магазином патронов) ракеты, рассматривая ее поначалу как прототип высотной космической ракеты.  [c.442]

Не утомляя читателя наукообразностью и в то же время не упрощая реальных физических и технических проблем, автор последовательно анализирует физико-химические и механические характеристики топлив, процессы в камере сгорания и сопле на режимах запуска, установившейся работы и выключения, рассматривает проблемы неустойчивости горения, охлаждения и управления вектором тяги, описывает современные и перспективные схемы и конструкции ЖРД и РДТТ с учетом технологических аспектов их изготовления и иллюстрирует изложение примерами применения ракетных двигателей на ракетах-носителях и космических летательных аппаратах. В тех случаях, когда это возможно, автор рассматривает жидкостные и твердотопливные двигатели совместно, что нетипично для отечественной научной и учебной литературы, но весьма желательно для расширения кругозора и улучшения взаимопонимания между специалистами по ЖРД и РДТТ.  [c.7]

На следующей стадии процесса производства СТТ осуществляется смешивание компонентов, которое можно проводить непрерывно или в смесителях периодического действия емкостью 600- 2400 л. Последние снабжены приспособлениями для нагрева и охлаждения топливной массы, добавления катализатора и откачки газа. Продолжительность цикла смешивания обычно составляет 30- 45 мин. Выпускаются горизонтальные и вертикальные смесители периодического действия (рис. 21). Для изготовления очень крупных твердотопливных зарядов необходимо непрерывное смешивание компонентов СТТ. Один из методов непрерывного смешивания, применявшийся при изготовлении заряда РДТТ ракеты Поларис , показан на рис. 22. Создаются три потока — окислителя, горючего и катализатора, которые регулируются с точностью около 1%. Время пребывания топливной массы в смесителе невелико и составляет около 90 с. После дегазации топливная смесь направляется на пункт отливки.  [c.47]

Для регулирования величины тяги в РДТТ, установленных, например, на ракетах, предпочтительнее применять твердотопливный газогенератор. Расход продуктов сгорания в газогенераторе можно изменять, используя тот факт, что скорость горения большинства ТРТ зависит от давления. Эта особенность позволяет предложить простую схему регулирования тяги с переменным расходом (рис. 125, а). Давление в генераторе регулируется изменением площади проходного сечения в клапане при ее уменьшении давление возрастает, что вызывает рост скорости горения и, следовательно, расхода.  [c.213]

Ниже описываются некоторые из этих двигателей, а именно ускорители ракеты-носителя Титан-П1 С , твердотопливный ускоритель воздушно-космической системы Спейс Шаттл , вспомогательный твердотопливный ускоритель ракеты-носителя Ариан 3 и ряд двигателей космических летательных аппаратов, предназначенных для перевода полезной нагрузки с низкой околоземной орбиты на геостационарную, в частности РДТТ межорбитальных буксиров (МБ).  [c.224]


Высокая эффективность, продемонстрированная твердотопливными ускорителями ракеты-носителя Титан III , послужила основной причиной того, что NASA (после изучения преимуществ и недостатков твердотопливных ускорителей по сравнению с жидкостными) решило использовать 2 ТТУ диаметром 3,71 м, длиной 38,1 м, снаряженных 502 580 кг того же топлива на основе ПБАН и имеющих четырехсекционную конструкцию. Система Спейс Шаттл показана на рис. 137. Два РДТТ, запускаемые вместе с маршевыми двигателями космического летательного аппарата многоразового использования Спейс Шаттл , отделяются после сгорания (номинально через 122 с) на высоте около 50 км. К этому времени Спейс Шаттл находится приблизительно в 45 км от стартовой площадки и движется со скоростью 5150 км/ч. После отделения ускорителей открывается группа парашютов — сначала вытяжной, затем стабилизирующий и, наконец, основная связка, уменьшающая вертикальную составляющую скорости ускорителя к моменту его соударения с водой приблизительно до 96 км/ч. Траектория отработавшего ускорителя показана на рис. 138. После ремонтно-восстановительных работ корпус ускорителя транспортируют обратно в космический центр, заливают новым зарядом ТРТ и подготавливают к повторному запуску. Металли-  [c.227]

До 1985 г. на космодроме Куру эксплуатировался один стартовый комплекс (ELA-1) для ракеты-носителя Ариан-Г без навесных стартовых твердотопливных ракетных двигателей (РДТТ).  [c.94]

Для тех, кто интересуется авиациотой техникой и космонавтикой назовем такие работы как Эне1)гетические системы космических аппаратов (194), Нештатные ситуации космических полетов (206), Твердотопливные ракеты (211), Напряженные элементы конструкции летательных аппаратов из композиционных материалов (222), Летчик как динамическая система (195), Системный анатиз комплексов космонавт - техника (200).  [c.4]

В книге изложена история развития твердотопливных ракет. Конкретный фактический материал сопровождается анализом отыта создания отдельных образцов и выявлением основных закономерностей развития ракет на твердом топливе.  [c.107]

В 1912-1913 годах, уже будучи ципломированным инже-пером и доктором философии, Годцард разрабатывает свою собственную теорию движения ракет, а в 1915 году приступает к стендовыми экспериментам с твердотопливными ракетами, определяя их эффективность при различных конфи-  [c.334]

Начиная с 1917 года, Годдард занимался конструкторскими разработками в области твердотопливных ракет различного типа, и в том числе многозарядной ракеты импульсного горения, подобной той, которую предлагал Кибальчич. Испытания этой ракеты, проведенные в ноябре 1918 года, были не слишком удачными, но Годцард в течение еще трех лет пытался создать работоспособную конструкцию.  [c.336]

Силовая установка 2 х Юнкере Jumo 004В статической тягой по 900 кг дополнительно, для улучшения взлетных характеристик, 4 твердотопливных ракеты Р1-503 с расчетной тягой по 1000 кг. Не было возможности, как на самолете Хортен IX, использования других двигателей без дорогостоящей переделки конструкции  [c.77]

В основании корабля находится теплозащитный экран, выполненный из абляционного стеклопластика, к которому в центре стяжными лентами крепится, ТДУ, представляющая собой блок из трех твердотопливных двигателей. В блоке ТДУ помимо основных РДТТ размещены еще три малых РДТТ 6, предназначенных для отделения корабля от ракеты-носителя. К основанию корпуса корабля крепится кресло астронавта с системой привязных ремней. Кресло размещается на легкой опоре, выполненной по форме тела астронавта в позе, удобной для восприятия перегрузок в наиболее благоприятном направлении (грудь-спина), лицом вперед по оси ракеты-носителя.  [c.50]

РДТТ будут и в будущем конкурировать с ЖРД, особенно в области малых и средних дальностей полета. Но так как удельная сила тяги, развиваемая РДТТ, все же при прочих равных условиях меньше удельной силы тяги, развиваемой ЖРД, то они не могут успешно применяться для вывода на орбиту космических аппаратов. Здесь приоритет принадлежит ракете с ЖРД. Однако РДТТ могут применяться и в качестве вспомогательных двигателей на ракетах с ЖРД (твердотопливные ускорители).  [c.519]


Смотреть страницы где упоминается термин Ракеты твердотопливные : [c.32]    [c.224]    [c.61]    [c.94]    [c.143]    [c.423]    [c.109]    [c.140]    [c.148]    [c.175]    [c.19]    [c.390]    [c.107]    [c.266]   
Техника в ее историческом развитии (1982) -- [ c.435 , c.442 ]



ПОИСК



Ракета



© 2025 Mash-xxl.info Реклама на сайте