Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лампа

J — дуговая лампа 2 — отражатель 3 — экранирующая насадка 4 — стол для закрепления свариваемых деталей  [c.166]

Для наглядного представления о проекции можно использовать настольную лампу с рефлектором и любую плоскость светлого тона (стена, дверь), помещая между ними различные непрозрачные геометрические тела. Тень, отбрасываемая этими предметами, и представляет их проекции. Процесс получения изображений (проекций) называют проецированием.  [c.8]

Круглая для цоколей и патронов электрических ламп ГОСТ 6042—71 Е Номинальный диаметр резьбы в мм  [c.85]


Лампа накаливания осветительная и сигнальная (о. в), для сигнальных — допускаются варианты б и  [c.315]

Триод (электронная лампа)  [c.318]

Щуп 7, упирающийся на копир 5, управляет контактами реле 6, включенными в цепь сетки электронной лампы 8. Сетка управляет анодным током, который приводит в действие электромагнит 5, переключающий с помощью рычага 2 золотник I гидравлической системы, управляющей подачей масла в цилиндр 4 и перемещающей суппорт 9.  [c.335]

Для наглядного представления о проекции можно использовать настольную лампу с рефлектором и любую плоскость светлого тона (стена, дверь), помещая между ними различные непрозрачные геометрические тела.  [c.9]

Лампа накаливания осветительная и сигнальная  [c.272]

При газопламенной пайке заготовки нагревают и припой расплавляют газосварочными, плазменными горелками и паяльными лампами. При пайке газосварочными горелками в качестве горючих газов используют ацетилен, природные газы, водород, пары керосина и т. п. При использовании газового пламени припой можно заранее помещать у места пайки или вводить в процессе пайки вручную. На место пайки предварительно наносят флюс в виде жидкой пасты, разведенной водой или спиртом конец прутка припоя также покрывают флюсом.  [c.241]

При высокочастотной электроискровой обработке (рис. 7.4) конденсатор С разряжается при замыкании первичной цепи импульсного трансформатора прерывателем, вакуумной лампой или тиратроном. Инструмент-электрод и заготовка включены во вторичную цепь трансформатора, что исключает возникновение дугового разряда.  [c.404]

Атом вещества, имея определенный запас энергии, находится в устойчивом энергетическом состоянии и располагается на определенном энергетическом уровне. Для выведения атома из устойчивого энергетического состояния его необходимо возбудить. Возбуждение ( накачку ) активного вещества осуществляют световой импульсной лампой. Возбужденный атом, получив дополнительный фотон от системы накачки, излучает сразу два фотона, в результате чего происходит своеобразная ценная реакция генерации лазерного излучения,  [c.414]

Для предотвращения поражения электрическим током следить за тем, чтобы сварочные установки были надежно заземлены не прикасаться к распределительным щитам, проводам силовой, осветительной сети или другим токоведущим частям осмотр, перемещения оборудования и устранение неисправностей его производить при выключенном рубильнике для местного освещения пользоваться светильниками напряжением не выше 36 В и переносными лампами — 12 В.  [c.141]


В гл. 1 отмечалось, что визуальными измерениями температуры пользовались уже в конце 19-го столетия. Такой способ измерения был введен в МТШ-27. Уже с самого начала стало ясно, что пирометр монохроматического излучения представляет собой удобный, высоко воспроизводимый и точный прибор измерения температуры. Доступность ламп с угольной, а позднее с вольфрамовой нитью привела к созданию пирометра с исчезающей нитью. Хотя характеристики ламп с вольфрамовой нитью во многих отношениях были существенно лучше характеристик угольных ламп, последние продолжали использоваться в пирометрах с исчезающей нитью для измерения низких, до 650 °С температур вплоть до 1940 г. Преимущество угольной нити в этом случае связано с ее большой излучательной способностью, а следовательно, и хорошими цветовыми характеристиками, когда она рассматривается без цветного фильтра на фоне изображения черного тела.  [c.310]

Параллельно с развитием пирометров с исчезающей нитью шло усовершенствование вольфрамовых ленточных ламп, предназначенных для поддержания и распространения оптической температурной шкалы. Эти лампы совершенствовались непрерывно, и сейчас они используются в поверочных лабораториях совместно с образцовыми фотоэлектрическими пирометрами. Международные сличения температурных шкал выполняются путем кругового обмена такими лампами между национальными термометрическими лабораториями. В настоящее время согласованность между радиационными температурными шкалами в области от 1000 до 1700 °С, установленными основными национальными термометрическими лабораториями, характеризуется погрешностью 0,1 °С.  [c.311]

Ленточная вольфрамовая лампа как воспроизводимый источник для оптического пирометра  [c.349]

Градуированное черное тело переменной температуры не слишком удобно в качестве средства передачи температурной шкалы, однако большинство его функций столь же хорошо выполняет тщательно сконструированная вольфрамовая ленточная лампа. Излучение, испущенное в данном направлении при данной длине волны малой определенной областью на ленте, может быть градуировано в значениях электрического тока через лампу. Соотношение ток — температура может быть сделано хорошо воспроизводимым для широкой области температур. От 700 до 1700 °С используются вакуумные лампы, а от 1500 до 2700 °С — газонаполненные.  [c.350]

На рис. 7.18 показана величина (Т—Гд) для вольфрама как функция Т при двух длинах волн, 660 и 1000 нм. Недостаток вольфрамовой ленточной лампы, который очевиден из  [c.350]

Прежде чем перейти к устройству и характеристикам ленточных вольфрамовых ламп, рассмотрим кратко некоторые наиболее важные физические процессы, которые имеют место на поверхности нагретой вольфрамовой ленты и внутри ее. Представление об этих процессах полезно для понимания не только поведения ленточных вольфрамовых ламп, но и различных процедур, необходимых при изготовлении стабильных ламп. Обсуждение будет проведено на примере конструкции лампы, приведенной на рис. 7.19.  [c.352]

Для того чтобы лента вела себя как стабильный и воспроизводимый источник теплового излучения, вольфрам внутри и на поверхности должен быть близок к структурному равновесию. Рассмотрим основные процессы, которые происходят при длительном нагревании вольфрамовой ленты, помещенной в стеклянную оболочку, которая соединена с откачивающей системой [72]. Такими процессами являются обезгаживание и потеря вольфрама на испарение, рекристаллизация, образование канавок между зернами, изменение зернистости поверхности. Кроме того, для оценки поведения лампы в целом необхо-  [c.352]

Чтобы удалить большинство растворенных в вольфраме газов, необходимо нагреть его в вакууме до температуры около 2200 °С и откачивать в течение примерно двух часов (здесь и в -последующем при обсуждении изменений в вольфраме приводится истинная температура, а не спектральная яркостная температура). После такой обработки основная часть оставшегося в стеклянной оболочке лампы газа будет появляться из молибденовых или никелевых вводов, которые остаются при более низкой температуре, или из стекла. Нагретый вольфрам выделяет следующие газы (в порядке их концентрации) азот, окись углерода и водород. Присутствие их в твердом растворе всегда увеличивает электрическое сопротивление металла. Если после отпайки лампы имеет место чрезмерная дегазация вольфрама, обычно наблюдается гистерезис соотношения со-противление/температура. Этот гистерезис происходит следующим образом. При высоких температурах газ выделяется из глубины металла диффузией к поверхности и испарением. При охлаждении тот же газ, если он не был удален откачкой или абсорбирован в другом месте, конденсируется на поверхности вольфрама и начинает диффундировать обратно в металл, увеличивая тем самым его сопротивление. Скорость, с которой происходят все эти процессы, является экспоненциальной функцией температуры. Для ламп, используемых в области до 1800 °С, дрейф сопротивления при охлаждении, скажем до 1200 °С, может происходить в пределах нескольких дней как результат недостаточной дегазации в начальной стадии или последующей течи.  [c.353]


Равновесная структура зависит от ориентации решетки вблизи поверхности относительно направления градиента потенциала. Перемена полярности тока лампы приводит поэтому к сильным изменениям структуры поверхности и в градуированных лампах ее следует избегать.  [c.358]

Скорость, с которой структура поверхности приближается к равновесию, регулируется факторами, подобными тем, от которых зависит скорость рекристаллизации. Обычно чем выше температура, тем выше скорость. Для рекристаллизационного процесса из этого следует, что после отжига при высокой температуре и достижения состояния, близкого к равновесию, последующий отжиг при более низкой температуре вряд ли меняет структуру. Чтобы установилась стабильная структура поверхности, новые вакуумные ленточные лампы необходимо нагревать при температуре около 1900°С в течение от 100 до 300 ч.  [c.358]

Конструкция и характеристики вольфрамовых ленточных ламп  [c.358]

На рис. 7.19 показана конструкция вольфрамовой ленточной лампы, которая оказалась наиболее удачной. При обсуждении воспроизводимости вольфрамовых ленточных ламп, используемых в качестве эталонов яркости, необходимо принимать во внимание следующие факторы  [c.358]

У большинства ламп проявляется небольшой повторяющийся гистерезис в цикле от 1064 °С (теперь мы возвращаемся к спектральной яркостной температуре при 660 нм), который может доходить до 0,05°С. Однако это изменение яркостной температуры сопровождается изменением электрического сопротивле-  [c.358]

Нйя й поэтому МОЖНО ввести поправку [43]. Долговременный дрейф яркостных температур ниже 1500 °С незначителен, но он возрастает примерно до 0,02 °С за 100 ч при 1600 °С, 0,08 °С при 1700 °С и 0,15°С при 1770 °С. Эти величины типичны для вольфрамовых ленточных ламп, так что температура выражается как функция только величины постоянного тока. Это вполне адекватный метод. Он устраняет трудности проведения точных измерений напряжения на вводах при наличии температурных градиентов. Для конструкции лампы, показанной на рис. 7.19, соотношение ток/температура может быть выражено полиномом четвертой степени для вакуумных ламп в области от 1064 до 1700 °С, а для газонаполненных ламп — в области от 1300 до 2200 °С. Для ламп конкретной конструкции коэффициенты полиномов варьируются слабо, что обеспечивает удобный контроль в процессе градуировки [1,26].  [c.359]

I — источник тока Р — батарея конденсаторов д — корпус 4 — импульси 1Я лампа 5 —пусковое устройство 6 — рубин 7 — линзы 8 — з шотовка  [c.414]

Для механической обработки используют твердотелые ОКГ, рабочим элементом которых является рубиновый стержень, состоящий из оксидов алюминия, активированных 0,05 % хрома. Рубиновый ОКГ работает в импульсном режиме, генерируя импульсы когерентного монохроматического красного цвета. При включении пускового устройства ОКГ электрическая энергия, запасенная в батарее конденсаторов, преобразуется в световую энергию импульсной лампы. Свет лампы фокусируется отражателем на рубиновый стержень, и атомы хрома приходя в возбужденпое состояние. Из этого состояния они могут возвратиться. в нормальное, излучая с(ютоны с длиной волны 0,69 мкм (красная флюоресценция рубина).  [c.414]

Для многих перемонтируемых изделий (шестерни, осветительные лампы, узлы электро- и радиоприборов) предельное состояние совпадает с отказом. В ряде случаев предельное состояние определяется достижением периода повышенной интенсивности отказов. Таким методом определяется предельное состояние для компонентов автоматических устройств, выполняющих ответственные функции. Применение этого метода обусловлено снижением эффективности эксплуатации изделий, компоненты которых имеют повышенную интенсивность отказов, а также нарушением требований безопасности.  [c.33]

Введение внутрь стального отвода фторопластовой трубы производят после ее разогрева паяльной лампой. Чтобы в местах изгиба не образовались складки, трубу предварительно, до ее нагрева, васнпаот песком и глушат с обеих сторон пробками.  [c.77]

Перенос тепла излучением может, разумеется, происходить и в противоположном направлении, повышая температуру чувствительного элемента, если на элемент попадает излучение какого-либо внешнего источника. Такая ситуация возникает, например, при измерении температуры прозрачной жидкости в комнате, освещаемой лампами накаливания. Следует помнить, что тепловой эффект измерительного тока в 1 мА эквивалентен выделению на чувствительном элементе мощности в 25 мкВт. Высокотемпературный источник теплового излучения, например лампа накаливания в 150 Вт на расстоянии 3 м от термометра, вполне может создавать в направлении термометра поток излучения до 20 Вт на стерадиан. Если между термометром и источником теплового излучения нет поглощающей среды, на термометр может попадать до 9 мкВт теплового излучения, что для некоторых типов термометров будет эквивалентно нагреванию на 1 мК. Выход из положения в этом случае состоит, например, в помещении термометра в непрозрачную трубку, заполненную легким маслом для улучшения теплового контакта со средой. Необходимо следить за тем, чтобы между применяемыми здесь материалами не  [c.213]

Начнем с описания теории излучения черного тела, за которым последует обсуждение различных методов вычисления коэффициентов излучения полостей, близких к черному телу, и обсуждение практической реализации таких полостей. После этого рассмотрим вольфрамовые ленточные лампы как воспроизводимый источник теплового излучения для термометрии. На этой основе мы ознакомимся с термометрией излучения, реализацией МПТШ-Б8 выше точки золота, измерением термодинамической температуры, методами измерений при неполных данных об излучательной способности поверхности и, наконец, термометрией излучения полупрозрачных сред.  [c.311]


Рис. 7.19. Вольфрамовая ленточная лампа, применяемая в качестве воспроизводимого источника теплового излучения для градуировки радиационных пирометров, а также для сличения температурных шкал в области 700—1700 С (любезно представлено фирмой GE Со, Лондон) [56]. / — пирексовая пластинка, расположенная под углом 5 к нормали 2 — пирексовая пластинка толщиной 4 мм, расположенная под углом 5° к нормали 3—вольфрамовая лента 1,3x0,07 мм 4 — посеребренная медь 5 — никель 6 — небольшая метка 7 — большой двухштырьковый цоколь. Рис. 7.19. <a href="/info/3817">Вольфрамовая ленточная лампа</a>, применяемая в качестве воспроизводимого <a href="/info/402092">источника теплового излучения</a> для градуировки <a href="/info/10253">радиационных пирометров</a>, а также для сличения <a href="/info/3903">температурных шкал</a> в области 700—1700 С (любезно представлено фирмой GE Со, Лондон) [56]. / — пирексовая пластинка, расположенная под углом 5 к нормали 2 — пирексовая пластинка толщиной 4 мм, расположенная под углом 5° к нормали 3—вольфрамовая лента 1,3x0,07 мм 4 — посеребренная медь 5 — никель 6 — небольшая метка 7 — большой двухштырьковый цоколь.
При обычной максимальной рабочей температуре для вакуумных ленточных ламп 1850 °С давление паров вольфрама чрезвычайно низко и им можно пренебречь. Однако для ламп, предназначенных для работы при более высокой температуре, в оболочку вводится инертный газ, например аргон. Присутствие газа понижает потери вольфрама на испарение. Большинство испарившихся атомов вольфрама не успевает продиффун-дировать через граничный слой газа и уйти с конвекционным потоком, а затем после столкновений с атомами газа вновь конденсируется на поверхности вольфрама. Очень большие потери вольфрама могут быть обусловлены процессом, известным как эффект водного цикла . Потери в этом процессе являются наиболее существенными и могут приводить к большим дрейфам градуировки при высоких температурах. Принято считать, что эффект водного цикла имеет следующий механизм. Водяной  [c.353]

В процессе изготовления ламп во время отпайки оболочки освобождается некоторое количество водяного пара и этот пар будет добавляться к тому небольщому количеству, которое остается после дегазации стекла в процессе длительного отжига. Чистая стеклянная поверхность сильно адсорбирует атомарный водород, однако количество водорода, адсорбированного до того, как стекло начинает освобождать его в виде молекулярного водорода, очень невелико. Тем не менее, несмотря на образующийся при отпайке водяной пар, создавать стабильные лампы возможно, и представляется вероятным, что для са-моподдерживающегося водяного цикла требуется некое определенное минимальное количество водяного пара.  [c.354]

При первом нагревании вольфрамовой ленты первоначальная рекристаллизация начинается примерно при 1200 °С. Образуются ядра зерен, которые растут до соприкосновения зерен. Затем происходит небольщой дальнейщий рост зерен, пока температура не достигнет примерно 1900 °С. При этой температуре происходит вторичная рекристаллизация, когда некоторые зерна растут за счет других. Вторичная рекристаллизация продолжается до тех пор, пока поверхностная энергия зерен достаточна для преодоления блокирующих процессов, препятствующих передвижению границ зерен. Последующая работа лампы при более низких температурах будет оказывать незначительное влияние на размер зерен.  [c.354]

В прецизионных измерениях спектральной яркости необходимо обеспечивать определенное положение и размер наблюдаемой площадки на ленте. Это вызвано тем, что избежать градиентов температуры и упоминавшихся выше вариаций излучательной способности от зерна к зерну невозможно. И хотя подробности распределения температуры вдоль ленты зависят от ее размера, теплопроводности, электропроводности и полной излучательной способности, результирующее распределение вблизи центра не должно сильно отличаться от параболического. Такие отличия, как это наблюдалось, возникают из-за вариаций толщины ленты и существенны для ламп с широкой и соответственно тонкой лентой. В газонаполненной лампе с вертикально расположенной лентой максимум смещается вверх от центра вследствие конвекции. В вакуумной лампе к заметной асимметрии распределения относительно центра приводит эффект Томсона. Наиболее высокая температура в вакуумной лампе всегда близка к отметке на краю ленты. На рис. 7.23 показаны градиенты температуры, измеренные при двух температурах на ленте лампы, конструкция которой приведена на рис. 7.19. Температурные градиенты на лентах газонаполненных ламп несколько больше, чем градиенты, показанные на рис. 7.23, и имеют асимметричный вид из-за конвекционных потоков. Конвекционные потоки существенно зависят от формы стеклянной оболочки и ее ориентации по отношению к вертикали. При некоторых ориентациях яркостная температура начинает испытывать весьма значительные циклические вариации с периодом порядка 10 с и амплитудой в несколько градусов. Перед градуи-  [c.359]


Смотреть страницы где упоминается термин Лампа : [c.165]    [c.165]    [c.166]    [c.319]    [c.277]    [c.412]    [c.87]    [c.513]    [c.525]    [c.73]    [c.56]    [c.351]    [c.357]    [c.360]   
Техника в ее историческом развитии (1982) -- [ c.0 ]

Электрооборудование автомобилей (1993) -- [ c.111 , c.117 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте