Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовая теория

Результаты классической теории теплоемкости достаточно хорошо согласуются с экспериментальными данными в области комнатных температур (табл. 2.1), однако основной вывод о независимости от температуры эксперимент не подтверждает. Расхождения, особенно существенные в области низких и достаточно высоких температур, связаны с квантовым поведением молекул и находят объяснения в рамках квантовой теории теплоемкости.  [c.16]

Элементы молекулярно-кинетической и квантовой теории теплоемкости  [c.73]


Учет энергии колебательного движения атомов в молекуле дается квантовой теорией теплоемкостей. Эта теория доказывает, что теплоемкость двух- и многоатомных газов является функцией температуры, так как энергия колебательного движения атомов в молекуле изменяется не пропорционально повышению температуры.  [c.76]

Эйнштейн, пользуясь квантовой теорией Планка, получил следующее выражение для мольной теплоемкости, достаточно точное для температур, применяемых в теплотехнике  [c.76]

В настоящее время имеется большое количество пособий и специальных таблиц, в которых эти величины с высокой степенью точности даются для широкого интервала температур. Все новейшие данные по теплоемкостям, энтальпии и внутренней энергии рассчитаны с использованием уточненных спектроскопических констант методом квантовой статистики. Приведенная выше формула Эйнштейна для подсчета теплоемкости может рассматриваться как первый шаг в создании современной квантовой теории теплоемкости.  [c.79]

Классическая теория не дает никакого ответа на эти вопросы. Единственным критерием, оправдывающим выбор той или иной картины движения, является здесь согласие с экспериментом. И только квантовая теория в состоянии объяснить, почему некоторые движения иногда не проявляются. Мы познакомимся с этим объяснением в гл.8.  [c.67]

В соответствии с квантовой теорией носителями энергии излучения являются фотоны, представляющие собой поток частиц, взаимодействующий с веществом. Фотон характеризуется прежде всего величиной своей энергии, равной произведению hv, где /1=6,625-КФ Дж- с — постоянная Планка, а -V — частота колебаний эквивалентного электромагнитного поля, с Ч Длина волны X (м) связана с V через соотнощение  [c.12]

Это выражение может быть получено и на основании квантовой теории излучения (см., например, [7]).  [c.15]

Наличие естественной ширины спектральной линии вытекает также из квантовой теории. Согласно квантовой теории, атомы (и молекулы) принимают не всевозможные значения энергии, а лишь дискретные, т. е. каждому атому соответствует совокупность значений энергии. Их и принято называть энергетическими уровнями. Отдельные уровни энергии графически изображаются с помощью горизонтальных линий. Расстояния между линиями в вертикальном направлении в выбранных масштабах выражают разность энергий между соответствующими их уровнями. При переходе атомов (или электронов) с верхних уровней на нижние происходит излучение, а при обратном переходе — поглощение.  [c.41]

Явление поглощения света объясняется на основе как классической, так и квантовой теории.  [c.279]

Поглощение света с точки зрения квантовой теории. Согласно квантовым представлениям, атомы и молекулы обладают не непрерывными, а дискретными значениями энергии (основное и возбужденные состояния). При распространении света через среду часть энергии тратится на возбуждение системы, а часть (вместе с возвращенной долей энергии за счет переходов из возбужденных со-  [c.279]


Квантовомеханическая теория хотя и вносит существенные уточнения, но физическое содержание явления остается неизменным. Согласно квантовой теории, вычисление магнитной оптической активности вещества проводится обычно в три этапа  [c.305]

Поскольку решение проблемы теплового излучения (называемого также температурным или равновесным излучением) сыграло важную роль в создании квантовой теории света, целесообразно подробно остановиться на законах теплового излучения.  [c.323]

Понятие о световом кванте. Формула (15.3а) получена, как мы уже видели, на основе качественно новой — квантовой — теории, согласно которой излучение и поглощение света происходит порциями — квантами. В дальнейшем А. Эйнштейн выдвинул гипотезу о том, что не только поглощение и излучение, а также распространение света происходит дискретно, порциями. Кванты света получили название фотонов.  [c.338]

Выдвижением своей гипотезы о дискретности энергетических состояний осциллятора Планк (1900 г.) заложил основу квантовой теории. Правда, при выводе своей формулы для спектральной плотности теплового излучения он приписывал свойства дискретности только нагретому телу, а не электромагнитному излучению.  [c.338]

Как было указано, Эйнштейн, развивая идею Планка, сделал второй шаг на пути развития квантовой теории, выдвинув новую гипотезу, согласно которой само электромагнитное излучение состоит из отдельных корпускул (квантов) — фотонов с энергией о = и импульсом р hv/ . Гипотеза Эйнштейна в дальнейшем была подтверждена многочисленными экспериментальными фактами и легла в основу объяснения ряда оптических явлений, с которыми не могла справиться волновая теория света.  [c.338]

Квантовая теория света и фотоэффект. Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.  [c.343]

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых  [c.343]

Квантовая теория явления Комптона. Явление Комптона было объяснено на основе квантовой теории света. Совпадение результатов квантовой теории с опытными данными говорит в пользу фотонной теории света. Следовательно, явление Комптона является одним из экспериментальных фактов, подтверждающих квантовую теорию света. Эффект Комптона ценен еще и тем, что им проверялся в процессах с участием фотонов не только закон сохранения энергии (как это было при фотоэффекте), но также и закон сохранения импульса.  [c.347]

Кратко изложим квантовую теорию явления Комптона.  [c.347]

Давление света с точки зрения квантовой теории света. Величину давления света можно вычислить, исходя также из квантовых представлений. С точки зрения теории фотонов давление света на поверхность происходит в результате передачи светом импульса при поглощении и отражении поверхностью.  [c.352]

Как вышеупомянутые, так и другие закономерности люминесценции не были объяснены с помощью классических представлений. Все попытки в этом направлении неизбежно кончались неудачей. Правильное истолкование указанных явлений возможно лишь на основе квантовой теории света и структуры частиц — атомов и молекул.  [c.364]

Стоксово и антистоксово излучение с точки зрения квантовой теории. Для объяснения закономерностей стоксова и антистоксова излучений рассмотрим три электронных уровня атома Ei, и 3. При термодинамическом равновесии атомы распределены по энергетическим уровням согласно закону Больцмана  [c.364]

Можно объяснить все эффекты преобразования частот также исходя и из квантовой теории. С точки зрения квантовой физики все эти эффекты являются многофотонными процессами, при которых в каждом элементарном акте взаимодействия участвуют несколько (три в случае генерации второй гармоники, четыре в случае генерации третьей гармоники и т. д.) фотонов. Например, согласно этой схеме, при генерации второй гармоники одновременное исчезновение двух фотонов с частотами ы каждого приводит к мгновенному рождения одного фотона с частотой 2 d. Отсутствие задержки между исчезновением двух квантов и рождением одного приводит к когерентности волн с удвоенной частотой. Благодаря этому про-  [c.394]


Давление света 349—353 --, квантовая теория 352, 353  [c.426]

Опыты Франка и Герца явились экспериментальным подтверждением правильности основных положений квантовой теории Бора.  [c.313]

Эти опытные факты противоречат классич( ской теории, согласно которой частота вынужденных колебаний должна точно совпадать с частотой вынуждающей силы, т.е. частотой облучающего света, и не может возникать никаких спутников. По квантовой теории, столкновение фотона со связанным в атоме электроном должно приводить к частичной потере энергии фотона, в результате чего квант после столкновения (hv) будет меньше исходного kv). В зависимости от геометрии эксперимента соотношение между v и v может измениться.  [c.448]

Сформулируйте разницу между классической и квантовой теорией дисперсии.  [c.454]

Чтобы произошла ядерная реакция, два атомных ядра должны хоть на мгновение сблизиться до расстояний порядка 10 см. Кулоновское отталкивание между ядрами удерживает их на значительно больших расстояниях друг от друга, за исключением тех случаев, когда Г > 10 К для протонов и Т > 10 К для ядер атомов гелия. Пользуясь квантовой теорией, можно произвести количественный расчет этих температур зажигания термоядерной реакции.  [c.305]

В гл. 12 мы получим уравнения (65) и (69), не ссылаясь на понятия четырехмерного вектора и пространства — времени. Однако, познакомившись с этими понятиями, мы овладели еще одним приемом теоретического анализа и получили простой и изящный метод составления уравнений, инвариантных относительно преобразования Лоренца. Этот метод открывает возможность для дальнейших обобщений, ведущих к более абстрактным и математически усложненным теориям — релятивистской квантовой теории и общей теории относительности Эйнштейна. Возможность составлять уравнения, инвариантные относительно преобразования Лоренца, не доказывая в каждом отдельном случае их инвариантность, позволяет физикам рассматривать еще более сложные проблемы, которые не могли бы быть решены иным путем.  [c.371]

Со времени зарождения квантовой теории излучения черного тела вопрос о том, насколько хорощо уравнения Планка и Стефана — Больцмана описывают плотность энергии внутри реальных, конечных полостей, имеющих полуотражающие стенки, был предметом неоднократных обсуждений. Больщин-ство из них имели место в первые два десятилетия нащего века, однако вопрос закрыт полностью не был, и в последние годы интерес к этой и некоторым другим родственным проблемам возродился. Среди причин возрождения интереса к этому старейшему предмету современной физики можно назвать развитие квантовой оптики, теории частичной когерентности и ее применение к изучению статистических свойств излучения недостаточное понимание процессов теплообмена излучением между близкорасположенными телами при низких температурах и проблему эталонов далекого инфракрасного излучения, для которого длина волны не может считаться малой, а также ряд теоретических проблем, относящихся к статистической механике конечных систем. Хорошим введением к современному обзору в этой области являются работы [2, 3, 5]. Еще в 1911 г. Вейль показал, что требованием о том, чтобы полость являлась прямоугольным параллелепипедом, можно пренебречь при условии, что (У /с)- оо. Он показал также, что в пределе больших объемов или высоких температур число Джинса справедливо для полости любой формы. Позднее на основании результатов работы Вейля были получены асимптотические приближения, где Do(v) являлся просто первым членом ряда, полная сумма которого 0 ) представляла собой среднюю плотность мод. Современные вычисления величины 0 ) [2, 4] с использованием численных методов суммирования первых 10 стоячих волн в полостях простой формы показали, что прежние асим-  [c.315]

Но это как раз тот результат, который ознаменовал рождение квантовой теории Он был постулирован Планком в декабре 1900 года в мучительных попьггках понять законы теплового излучения тел. И после этого был многократно подтвержден экспериментально по своим проявлениям в самых разных явлениях.  [c.176]

Эта формула, которую пол)гчил в 1907 году Эйнпггейн, была одним из первых триумфов нарождавшейся квантовой теории. При высоких температурах, когда Т tim, она дает классический результат = 3. Но при понижении температуры exp(ftffl/70 оо и Сц о, как это и следует из эксперимента. На рис.8.7, взятом из  [c.179]

Описание процесса т е п л о в о г о излучения,, Все тела, температура которых отлична от абсолютного нуля, непрерывно излучают и поглощают лучистую. энергию. Излучение имеет двуединую корпускуляр-нонволновую природу. В связи с этим лучистый теплообмен между телами рассматривают как с позиций электромагнитной теории света, так и с позиций квантовой теории излучения.  [c.12]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]

Если бы уровни энергии в действительности являлись геометрическими линиями, то атомы излучали бы строго монохроматическую волну и спектр был бы строго линейчатым (дискретным). Одиако, как показывают опыты, атомы излучают спектр частот определенной ширины. Уширение спектральной линии, согласно квантовой теории, объясняется тем, что сами энергетические уровни обладают некоторой шириной Дт, величина которой определяется так называемым соотношением неопределенностей Гейзенберга AojT h, где т — время жизни атома на энергетическом уровне шириной А(о, h — постоянная Планка. Из этого соотношения вытекает, что Асо /г/т, т. е. естественная ширина линий, согласно квантовой теории, обратно пропорциональна времени жизни атома в начальном состоянии.  [c.41]


Понятие о квантовой теории дисперсии.В классической теории дисперсии атомы уподобляются осцилляторам с некоторыми собственными частотами колебаний. В основе же квантовой теории дисперсии лежит тот факт, что атомы принимают дискретные зна чения энергий Е ,. .. Как показывают соответствующие рас четы, в квантовой теории для дисперсии получается такая же фор мула, какая была получена в классической, с той лишь разницей что вместо набора собственных частот сооу в квантовой теории исполь зуются частоты атомных переходов из состояния Ej в состояние /  [c.275]

Нормальный эффект Зеемана объясняется, как уже было отмечено, классической электронной теорией Лореитца. Результаты этой теории совпадают с результатами квантовой теории нормального эффекта Зеемана. Как следует из классической теории , величина сдвига частоты определяется соотношением  [c.293]

В отличие от нормального эффекта аномальный эффект 35еемана удовлетворительно объясняется только с помощью квантовой теории  [c.293]

Нелинейные оптические процессы могут наблюдаться и при относительно малой интенсивности света, облучающего исследуемую среду. Так, например, открытое еще в долазерный век С. И. Вавиловым и В. Л. Левшиным (1926) уменьшение поглощения уранового стекла при увеличении яркости свечения конденсированной искры положило начало большому циклу работ по просветлению различных материалов, которые имеют большое практическое значение (создание безынерционных световых затворов и др.). Они легко интерпретируются (см. 8. 5) в квантовых представлениях, связанных обеднением ответственного за поглощение нижнего уровня за счет перехода атома на более высокий долгоживущий уровень. Однако значение таких нелинейных процессов полностью проявилось лишь после изобретения лазеров, а дальнейшее развитие нелинейной оптики неотделимо от развития квантовой теории.  [c.171]

Как уже указывалось, одним из первых приложений квантовой теории было истолкование законов фотоэффекта. Это явление было открыто в конце XIX в. Первичные наблюдения Герца сводились к установлению действия мощного ультрафиолетового излучения на искровой разряд между двумя цинковыми электродами. При освещении электродов ультрафиолетовым светом разряды заметно учащги гись, В обстоятельном исследовании А. Г.Столетова изучалось прохождение тока через конденсатор из двух цинковых пластин при освещении одной из них светом ртутной лампы (рис. 8.12). Эффект наблюдался лишь при освещении отрицательно заряженной пластины, и было высказано предположение, что при этом высвобождаются отрицательные заряды. Сила тока (фототока) в цепи оказалась пропорциональ-  [c.431]

Как показал Эйнштейн, эти противоречия снимаются, если явления рассматривать с позиций квантовой теории. В этом случае нужно записать закон сохранения энергии для элементарного процесса, заключающегося во взаимодействии одного кванта света с веществом, сводящегося к передаче электрону дискретного количества энергии. При этом нужно учесть, что электрон в металле не является свободным и, чтобы покинуть тело металла, электрон должен преодолеть работу выхода А. При учете этих физически ясных условий легко записат . уравнение, описывающее процесс поглоп1ения одного кванта и возникновения. электрона С наибольшей скоростью  [c.433]

С точки зрения сохранения энергии и импульса я°-мезон был создан в этом акте столкновения до этого столкновения он не существовал. Энергия для катализации создания л°-мезона была доставлена нейтроном и протоном. я -мезон может рассматриваться как созданный из вакуума — соверщенно аналогично тому, как электронно-позитронная пара создается гамма-лучом. Подробное описание механизма такого рода процессов возможно только на языке релятивистской квантовой теории. Взаимодействие между пионами (я-мезонами) и нуклонами (протонами и нейтронами) таково, что, если бы, пользуясь идеальным  [c.428]


Смотреть страницы где упоминается термин Квантовая теория : [c.70]    [c.66]    [c.159]    [c.275]    [c.426]    [c.460]   
Смотреть главы в:

Термодинамика для инженеров  -> Квантовая теория

Синхротронное излучение и его применения  -> Квантовая теория


Техника в ее историческом развитии (1982) -- [ c.446 , c.448 , c.453 ]



ПОИСК



Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте