Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочие сплавы меди

Прочие сплавы меди  [c.351]

Материалы высокой проводимости классифицируют по группам медь, сплавы меди с оловом (бронзы), сплавы меди с цинком (латуни), алюминий, серебро и прочие металлы и сплавы. В особую группу выделяют материалы для электрических контактов. В табл.1 приведены свойства наиболее распространенных металлов высокой проводимости.  [c.514]

Может быть, упорядочение в сплавах медь — золото нельзя описывать изинговской моделью, а следует учитывать влияние колебаний атомов, вакансий, дислокаций и всех прочих атрибутов реального кристалла Без сомнения, это неизмеримо усложняет проблему. И поэтому сперва стоит подумать не о замене неплохо зарекомендовавшей себя модели, а поискать более точные способы расчета в ее рамках  [c.184]


Марка сплава Медь Магний Марганец Кремний Прочие элементы Oj, МПа (кгс/мм ) Од 2,МПа (кгс/мм ) 65,%  [c.336]

Из прочих медных сплавов коротко укажем на сплав меди с 20% N1, называемый мельхиором. Он применяется в промышленности как коррозионноустойчивый материал при повышенной температуре. Кроме того, из него приготовляются сетки.  [c.374]

Поверхность сплавов алюминия покрыта пленкой окисла с высокой температурой плавления, поэтому требуется более высокая плотность мощности по сравнению с резкой стали. Еще большая плотность мощности при прочих равных условиях требуется для резки сплавов меди, обладающих высокой теплопроводностью.  [c.301]

В т бл. 15 приводятся состав пяти моющих растворов и режим электрохимического обезжиривания. Растворы 1,2 применяются для черных металлов, раствор 2 — для меди и ее сплавов, раствор 3 — для цинка и его сплавов, раствор 4 — для алюминия и его сплавов, а также для сплавов цинка, свинца и кадмия. Большие концентрации относятся к работе с сильно загрязненными изделиями и грубо обработанными. Раствор 5 предложен для обезжиривания при переменном токе, прочие растворы — при постоянном токе.  [c.39]

Сплавы алюминия с медью, кремнием, магнием, цинком и другими элементами называют алюминиевыми сплавами. В зависимости от химического состава сплавы алюминиевые литейные (ГОСТ 2685—75 ) разделяют на пять групп на основе алюминий — кремний, алюминий — кремний — медь, алюминий — медь, алюминий — магний, алюминий — прочие компоненты. Каждая группа имеет свои марки. Алюминиевые сплавы, предназначенные для ковки, штамповки и проката, изготовляют по ГОСТ 4784—74.  [c.138]

При пайке железа медью с разными зазорами структура, формирующаяся при затвердевании расплава, оказывается при прочих равных условиях различной в малых и больших зазорах. В широких зазорах (0,5—2 мм) кристаллизация происходит с образованием развитой дендритной структуры и имеет характер объемного затвердевания. Содерл<ание железа в осях дендритов достигает 4%, а на периферии падает до 2—2,5 % (массовые доли). Смена форм затвердевания с изменением размера зазора вызывается изменением условий кристаллизации. Согласно существующим представлениям тип кристаллизации сплавов определяется градиентом температуры расплава, а такл<е величиной и протяженностью области концентрационного переохлаждения вблизи фронта кристаллизации. При прочих равных условиях уменьшение зазора, а следовательно, слоя кристаллизующейся жидкости, начиная с определенного момента, приводит к таким изменениям указанных факторов, что дендритная форма кристаллов постепенно уступает место ячеистой, а последняя — преобладающему росту кристаллов с гладкой поверхностью. Окончательная кристаллическая структура металла шва не соответствует первоначальным формам роста кристаллов. Новые границы зерен в шве пересекают в произвольных направлениях дендритные и ячеистые кристаллы. При больших зазорах имеются участки, где вторичные границы совпадают с пограничными зонами первичных дендритов. При малых зазорах структура шва по ширине представляет собой один слой зерен. Возникновение вторичной структуры в литых сплавах связывается с образованием при кристаллизации большого числа дефектов (дислокаций и вакансий), способных перемещаться и группироваться в определенных участках затвердевающего металла.  [c.34]


Огневое рафинирование отходов меди 99,50 0,003 0,05 0,01 0,05 0,2 0,05 0,05 0,01 0,08 Для проката, сплавов на медной основе обычного качества и прочих литейных сплавов  [c.724]

Для низкотемпературной пайки сталей, меди, никеля и медных сплавов наиболее широко применяют припои системы олово — свинец, обладающие достаточной проч-  [c.37]

Таким образом, при взаимодействии меди с растворами серной кислоты решающую роль играет кислород воздуха, присутствия которого трудно избежать и на производстве и даже в лабораторных опытах. Этим, между прочим, можно объяснить частые расхождения при. определении коррозионных поте,рь меди и ее сплавов различными исследователями. Определить в процессе коррозионных испытаний с требуемой точностью степень аэрации исследуемых растворов удается далеко не всегда. Между тем известно, что скорость растворения меди в серной кислоте пропорциональна количеству растворенного в последней кислорода. В неподвижных растворах скорость коррозии зависит от проникновения кислорода через поверхность жидкости и пропорциональна содержанию кислорода в газовой фазе.  [c.220]

Оксидирование меди и прочих цветных металлов и сплавов  [c.205]

Оксидирование меди и ее сплавов применяется для защиты от коррозии, для чернения и декоративной отделки в приборостроении, оптико-механической промышленности, морском судостроении и прочих отраслях промышленности.  [c.205]

Защитно-декоративное оксидирование в прочих кислых электролитах. При оксидировании алюминия и его сплавов, не содержащих меди, в электролите, состоящем из 3—5-процентного раствора щавелевой кислоты, наблюдается эффект окрашивания оксидной пленки в декоративные золотистые тона. Так, при пользовании переменным током с напряжением 40—50 в при плотности тока от 2 до 4 а/дм и температуре 40—50° С можно иметь различные оттенки пленки в зависимости от плотности тока и выдержки. Например, для получения цвета латуни применяют выдержку 35—40 мин при плотности тока 3 а дм .  [c.177]

Для ацетиленопроводов не допускается применение труб, арматуры и прочих деталей из меди и ее сплавов, содержащих более 70% меди.  [c.498]

Согласно ГОСТ 1639—71 лом и отходы подразделяются по видам основного металла (алюминий и его сплавы, медь и ее сплавы и т. д.), по внешним физическим признакам на классы (А — лом и кусковые отходы, Б — стружка, В — порошковые отходы, Г — прочив отходы, Д, Е, Ж — отходы, содержащие ртуть), но химическому составу на группы (I, II, III, IV, V, VI) и по качеству на сорта (1, 2, 3, 4-й), главным показателем которых является степень незасорен-ности лома и отходов другими цветными металлами и сплавами.  [c.132]

Прочность и твердость С. б.с увеличением содержания сурьмы и олова увеличиваются, по пластичность при этом падает. Сплавы БН и Б6, содержаш,ие мышьяк, отличаются мелкозернистой структурой. Введение в сплавы никеля, кадмия, мышьяка способствует повышению твердости и прочности и позволяет снизить содержание олова до 9—11%. Медь в С. б. образует химич. соединение с сурьмой, кристаллизующееся в виде игл и устраняюш ее ликвацию более легких кристаллов твердого раствора Р-сурьмы и олова. Баббит БТ, содержащий небольшое количество теллура, обладает значительно большей пластичностью, чем прочие сплавы. С повышением темп-ры баббиты быстро теряют свою твердость (рис. 1), поэтому рабочие темп-ры подшипников, залитых баббитами, не должны превышать 80°.  [c.161]

Прочие сплавы. Из смеси порошков меди, оловз, свинца, железа, 5102 и графита можно такл<е изготовить фрикционные материалы для облицовки тормозов и муфт сцепления. Если 5Юо увеличивает коэфициент трения, то, с другой стороны, графит понижает износ от трения. Таким образом, соответствующей дозировкой этих двух компонентов удается регулировать оба фактора в желательном направлении.  [c.422]

В отношении химич. агентов Р. является металлом относительно стойким. В сухом воздухе чистая Р. окисляется с образованием красной окиси HgO только при продолжительном нагревании до 1°, близких к При дальнейшем сильном нагревании HgO распадается вновь на Р. и кислород. Р. во влажном воздухе, а также загрязненная, окисляется несколько быстрее с образованием закиси ртути Hg2 0, покрывающей металл тонкой пленкой. При комнатной 1° ртуть легко соединяется непосредственно с хлором и труднее с бромом. С серой Р. соединяется при комнатной при продолжительном растирании. В расплавленном фосфоре Р. растворяется, но с ним не соединяется. Из минеральных к-т на Р. действуют только те, которые действуют окисляюще, т. е. конц. серная и конц. и разбавленная азотная, а также царская водка, причем в зависимости от концентрации и Г реакций образуются соединения одно-или двувалентной Р. Разбавленная серная и конц. соляная к-ты на Р. не действуют, т. к. последняя обладает положительным потенциалом (в соприкосновении с раствором одновалентной Р. 4-0,793 V, с раствором двувалентной-[-0,86 V) и располагается т. о. в ряду напряжений между медью и серебром. С многочисленными металлами Р. образует сплавы— амальгамы (см.) особенно легко со щелочными и щелочноземельными металлами, серебром, золотом, свинцом, оловом, цинком и кадмием, труднее с медью. Совсем не образует амальгам с железом, никелем, кобальтом и марганцем. Для получения амальгам иногда достаточно соприкосновения жидкой ртути с соответствующим металлом некоторые амальгамы получают путем выделения Р. из растворов ее солей на менее благородном металле иногда пользуются электрич. током, выделяя соответствующий металл на ртутном катоде. Среди сплавов амальгамы занимают особое место, т. к. многие из них жидки или тестообразны уже при комнатной 1°. В химич. отношении они не отличаются от прочих сплавов, т. к. среди них имеются простые растворы других металлов в Р. (например цинк, кадмий), равно как и химич. соединения (щелочные металлы, медь, золото и другие). Особое место занимает амальгама аммония, получающаяся при обработке натриевой амальгамы крепким раствором хлористого аммония, быстро разлагающаяся уже при комнатной Г на Р., аммиак и водород.  [c.406]


Светлые пятна различной степени блеска на сплавах меди Пассивирован Появление зеленых пятен или общее позеленение деталей Неоднородность структуры с выявлением примесей алюминия, олова и прочих добавок ие в хромовокиел Пропущена операция пассивирования При отсутствии специальных требований не может служить причиной забракования ых растворах Ввести пассивирование после травления  [c.28]

Медь также широко применяют в водяном оборудовании. Например, фосфористук медь используют в горячих и холодных водопроводах в жилых зданиях и i подогревателях воды. Различные типы латуни используют для арматуры водопроводныг линий и отопительных систем. Алюминиевая латунь и медно-никелевые сплавы являются обычными материалами трубок в конденсаторах и других теплообменниках, например е тепловых насосах и в установках обессоливания морской воды. Алюминиевые бронзы применяют, помимо прочего, для клапанов и насосов морской воды.  [c.130]

Олозянистые бронзы представляют собой сплазы меди с оловом, а также более сложные сплавы с добавками цинка, свинца, фосфора, никеля и др, Оловянистые бронзы по своим механическим, литейным и прочим физическим свойствам хорошо изучены и освоены промышленностью.  [c.106]

Преимущества металлокерамической технологии 1) возможность получения тугоплавких металлов и сплавов, композиций из металлов, не смешивающихся в рнсплавленном виде и не образующих твердых растворов или интерметаллических соединений (железо — свинец, вольфрам — медь), композиций из металлов и неметаллов, пористых металлов и прочих материалов, получение которых другими методами затрудни-  [c.255]

Заклепкообразные высаженные (см. фиг. 43) Медь, латунь, серебро и его сплавы 1 о Высадка головки Отделочные а) Пресс-автомат б) Высадочный пресс-автомат Ванны и прочее оборудование Серийное Массовое  [c.870]

Литейные сплавы (по ГОСТ 2685—75). Предусмотрены на основе систем алюминий — кремний (марки АЛ2, АЛ4, АЛ9 и др.) алюминий— кремний — медь (в том числе марка АК5М7) алюминий — медь алюминий — магний алюминий — прочие компоненты. Некоторые марки алюминиевых литейных сплавов и их механические свойства в зависимости от способа литья и вида термической обработки, а также область их применения приведены в табл. П-42.  [c.79]

МеДно фосфсристые сплавы с серебром или без него, а также с малыми добавками других элементов или без них Прочие медиые сплавы Серебро, Ag > 99 %  [c.352]

Для получения плотных снимков без увеличения времени экспозиции применяют усиливающие экраны. Усиливающими экранами называют флуоресцирующие экраны и металлическую фольгу. Флуоресцирующие экраны, преобразующие ионизирующее излучение в видимый свет, представляют собой листы картона с нанесенным слоем флуоресцирующих веществ dW04, dS, ZnS. Эти вещества при флуоресценции дают почернение пленки более интенсивное, чем само ионизирующее излучение. Количественной характеристикой экранов служит коэффициент усиления — отношение экспозиций, необходимых для получения одинакового почернения с экранами и без них. В технике радиографии широко применяют экраны (табл. 4.11). Экраны должны иметь чистую гладкую поверхность. Наличие складок, царапин, трещин, надрывов и прочих дефектов, затрудняющих расшифровку снимков, не допускается. Качество снимков улучшается, если наряду с флуоресцирующими экранами применять экраны из металлической фольги, изготовленной из свинца и его сплавов, олова и меди. Наибольшим коэффициентом усиления обладает свинцовая фольга. Усиливающее действие свинцовой фольги, находящейся в непосредственном контакте с пленкой, связано с дополнительным действием на пленку частиц, выбитых из материала фольги под действием излучения.  [c.98]

Основным видом повреждений теплообменников и прочего оборудования, изготовленного из латуни и соприкасающегося с водой, является обесцинкование металла латунь при этом превращается в пористую губчатую массу, содержащую - 94% меди. Обесцинкование вызывается действием воды со сравнительно сильной кислотной или щелочной реакцией или с повышенным солесодержанием. Е)тот вид коррозии наблюдается также под слоем отложений, где содержание кислорода в воде меньше, чем в основной массе раствора. Извне приложенный электрический ток также увеличивает обесцинкование латуни. Обесцинкование наблюдается как местное, так и равномерное — слоевое. В первом случае в трубах возникают свищи, а во втором — часто образуются трещины. Обесцинкование латуни можно обнаружить визуально, хотя и в этом случае металлографическое исследова ше является полезным, ибо наличие в латуни бета-фа-зы способствует этому виду коррозии. Медные водо- и паропроводы разъедаются под действием воды с высоким содержанием кислорода и углекислоты. Медь и ее сплавы разъедаются также водой, содержащей растворенное железо или аммиак.  [c.68]

Свойства полированной поверхности, полученной в электролитах типа Алуполь и Эрфтверк , примерно идентичны и при прочих равных условиях зависят от состава полируемых сплавов. Сплавы, содержащие цинк и медь, полируются много хуже чистого алюминия. Силумины вообще нельзя подвергать химической полировке. Сплавы, содержащие магний, в большинстве случаев полируются удовлетворительно.  [c.74]

Как известно, сетки, наряду со знакопеременными деформациями, подвергаются коррозионному воздействию серума, содержащего оводненный акрилонитрил, и промывных вод, в составе которых кроме солей железа и прочих примесей находится аммиак, являющийся агрессивным агентом по отношению к меди и ее сплавам. Поэтому можно предположить, что еще большим сроком службы в указанных средах обладали бы сетки из хромоникелевой стали типа Х18Н9. Целесообразно опробовать-в производственных условиях также сетки из неметаллических материалов, т. е. из полипропиленовых, полиэфирных или других синтетических моноволокон, испытание которых в производстве бутадиен-стирольных каучуков дало хорошие результаты.  [c.330]


Для наиболее полного использования медных, цинковых, кадмиевых и прочих растворимых анодов все обрезки, остатки и прочие отходы анодного металла целесообразно укладывать в плоские анодные рамки (рис. 4) из металла, не растворимого в этом электролите, и применять их в качестве сборных анодов. Так, для меди, цинка, кадмия, олова и других остатков анодов в щелочных и цианистых электролитах применяют анодные рамки из нержавеющей стали, а в кислых электролитах — из титаца и его сплавов.  [c.28]

Никелирование прочих металлов. Никелирование магниевых сплавов, а также литейных цинковых сплавов типа ЦАМ4-1 наиболее надежно производят с применением подслоя меди. Составы и режимы меднения этих сплавов указаны в гл. VI.  [c.143]

НИН температуры в пределах от О до -f ЮО С), равную всего лишь 1,5-10 град. . В качестве второй составляющей выбирается материал с величиной X порядка 10. 10 — 16-10 град. — железо, никель, константан, твердотянутая медь, латунь, монель (сплав состава 687о никеля, 28% меди, прочее — железо, марганец и пр.), немагнитная сталь и т. п.  [c.259]

В последнее время при изготовлении термопар констая-тан часто заменяют близким к нему сплавом к о п е л ь (состав 56% меди и 44% никеля). Для изготовления термопар применяются также сплавы алюмель (95% никеля, прочее—алюминий, кремний и магний) и хромель (90% никеля и 10% хрома). На рис. 96 даны кривые зависимости термо-э. д. с. от разности температур горячего и холодного спаев для наиболее употребительных термопар, включая и термопару платина — платинородий (т. е. сплав 90% платины и 10% родия), применяемую для измерения температур до +1600° С. Термопары медь — константан и 260  [c.260]

Баббиты (сплавы на основе олова или свинца) иснольЗуют для заливки чугунных или бронзовых вкладышей (такие вкладыши применены в подшипнике, показанном на рис. 13.8). Высокооло-вянистые баббиты, например Б83, применяют при очень высоких скоростях и давлениях. По антифрикционным св011ствам баббит превосходит все прочие антифрикционные сплавы, но по механической прочности значительно уступает чугуну и бронзе. Для баббитов различных химических составов характерно наличие мягкой основы из олова или свинца и твердых зерен сурьмы, меди и других металлов. Благодаря мягкой основе заливка хорошо прирабатывается к цапфе твердые зерна повышают износостойкость.  [c.383]


Смотреть страницы где упоминается термин Прочие сплавы меди : [c.61]    [c.96]    [c.305]    [c.203]    [c.134]    [c.306]    [c.158]    [c.133]    [c.188]    [c.57]   
Смотреть главы в:

Основы металловедения  -> Прочие сплавы меди



ПОИСК



Медиана

Медь и сплавы

Медь и сплавы меди

Оксидирование меди и прочих цветных металлов и сплавов

Содержание Прочие металлы и неметаллические материалы Медь и ее сплавы (канд. техн. наук А. А. Лунев)



© 2025 Mash-xxl.info Реклама на сайте