Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения механики анизотропного тела

УРАВНЕНИЯ МЕХАНИКИ АНИЗОТРОПНОГО ТЕЛА  [c.302]

Уравнения механики анизотропного тела  [c.305]

Укладка арматуры 478, 479 Управление на стадиях полимеризации и охлаждения 476—478 Упрочнение анизотропное 156 Упругие постоянные в главных направлениях ортотропии материала 287 Уравнения механики анизотропного тела — Геометрические соотношения 307 — Граничные условия 307 — Статические соотношения 302, 303 — Физические соотношения 303—307  [c.509]


Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

В механике композиционных материалов (КМ) получили развитие два взаимосвязанных и дополняющих друг друга направления исследований. Первое из них базируется на строгом учете структуры материала, второе — на использовании интегральных диаграмм деформирования, которые могут быть получены экспериментально или расчетным путем. Точные решения задач механики в постановке, соответствующей первому направлению, кроме рассмотренных специфических вопросов [1-4], подтвердили применимость методов второго направления к весьма широкому классу композитов, использующихся для изготовления оболочечных конструкций, в связи с этим при разработке методов решения задач статики и динамики оболочек из КМ структурные особенности последних учитываются только при расчете эффективных характеристик анизотропной сплошной среды, имеющей такие же диаграммы деформирования и прочностные характеристики, что и исходный КМ. Построив в таком приближении уравнения состояния КМ, а также используя уравнения движения и соотношения между перемещениями и деформациями теории упругости анизотропного тела, можно получить решение соответствующих задач, хотя это сопряжено со значительными трудностями.  [c.105]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Необходимо отметить, что теория пластичности неоднородных и анизотропных сред является еще недостаточно разработанным разделом теории пластичности. Так, пластическая неоднородйость сильно влияет и на механику пластического равновесия тела, и на математическую сторону вопроса. Усложняются уравнения, теряют силу некоторые обычные теоремы и представления 157],  [c.88]


Смотреть страницы где упоминается термин Уравнения механики анизотропного тела : [c.303]    [c.128]    [c.27]    [c.138]   
Смотреть главы в:

Композиционные материалы  -> Уравнения механики анизотропного тела



ПОИСК



Анизотропное тело

Анизотропность

Уравнения механики анизотропного



© 2025 Mash-xxl.info Реклама на сайте