Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние некоторых факторов на коррозионные процессы

ВЛИЯНИЕ НЕКОТОРЫХ ФАКТОРОВ НА КОРРОЗИОННЫЕ ПРОЦЕССЫ  [c.26]

Таким образом, влияние биологического фактора на коррозионный процесс может проявляться как путем непосредственного действия на металл продуктов, вырабатываемых микроорганизмами, так и путем облегчения деполяризации. Некоторые бактерии образуют на металле пленки, которые способствуют возникновению коррозионных элементов дифференциальной аэрации.  [c.40]


Атмосферная коррозия металлов — наиболее распространенный вид электрохимической коррозии, протекающий во влажном воздухе при обычной температуре. Этот вид коррозии имеет ряд особенностей, относящихся прежде всего к условиям ее возникновения и влиянию некоторых факторов на скорость коррозионного процесса.  [c.28]

Приведенные среды для испытания некоторых металлов хорошо изучены и применяются, однако концентрацию их различные исследователи произвольно меняют. При исследовании растрескивания в агрессивных средах, в которых возможна потеря прочности металла за счет общей коррозии, необходимо учитывать этот фактор при определении истинной потери прочности за счет растрескивания. С этой целью при прочих равных условиях наряду с напряженными образцами в коррозионную среду одновременно помещаются, ненапряженные образцы. Один из ненапряженных образцов рекомендуется удалять в момент разрушения первого напряженного, другие—-по мере разрушения последующих. Относительное изменение предела прочности ненапряженных образцов характеризует потерю прочности металла вследствие общей коррозии. При испытаниях на устойчивость к растрескиванию необходимо предусмотреть однородность подготовки поверхности металла, так как она влияет на скорость процесса. Исследования [189—192] показали (табл. 10), что для ряда металлов повышение степени чистоты обработки поверхности существенно увеличивает время до растрескивания. Специальные опыты по изучению механизма влияния шлифования на скорость растрескивания показали, что шлифование вызывает 1) появление в поверхностном слое металла сжимающих напряжений и 2) увеличение скорости выделения по границам зерен р-фазы [191].  [c.120]

Влияние температуры на скорость коррозии неоднозначно. В случаях, когда скорость коррозии определя ется диффузией кислорода, при повышении температуры одновременно начинают действовать несколько факторов, по-разному влияющих на скорость процесса уменьшается растворимость кислорода, увеличивается скорость его диффузии, возрастает конвекция. На рис. 9.3 показана зависимость скорости коррозии стали в воде от температуры. Движение коррозионной среды влияет на скорость коррозии. Эта зависимость носит сложный характер. Вначале скорость коррозии возрастает. Затем, по мере увеличения поступления кислорода, наступает некоторая пассивация. При дальнейшем ускорении потока скорость коррозии снова возрастает. Для морской воды, богатой хлоридами, скорость коррозии возрастает постоянно с увеличением скорости обтекания (рис. 9.4).  [c.267]


Эти аспекты относятся как к электродному потенциалу, так и к составу коррозионной среды. Влияние потенциала на процесс растрескивания изменяется от одной системы (металл—раствор) к другой (см. раздел 5.1), но некоторые особенности влияния этого фактора следует обсудить применительно к углеродистым сталям. Эти материалы разрушаются в различных областях потенциалов в зависимости от состава коррозионной среды, в которую они помещены. Об этом свидетельствуют результаты опытов, включавших потенциостатический контроль (рнс. 5.68). На рис. 5.68 также  [c.321]

По вопросу влияния скорости движения воды на развитие коррозионного процесса существуют самые разноречивые данные. Некоторые исследователи утверждают, что увеличение скорости движения воды по трубам замедляет коррозию металла. Однако известны случаи и обратного действия данного фактора. На фиг. 146 показано влияние скорости движения воды на коррозию углеродистой стали при одинаковой продолжительности воздействия различных вод. Приведенные графики показывают, что в зависимости от состава воды, даже при одинаковом содержании кислорода, влияние скорости движения жидкости на коррозию стали может оказаться диаметрально противоположным.  [c.171]

Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (KP) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации.  [c.47]

Как утверждается в настоящее время, гипотеза водородного охрупчивания является полуколичественной и, таким образом, не может быть использована для объяснения отдельных моментов процесса коррозионного растрескивания. Некоторые из факторов среды, влияющих на КР, перечислены ранее. Фактическое влияние водорода при объяснении этих факторов рассматривается ниже  [c.399]

В данном обзоре рассмотрены многие экспериментальные факторы, которые оказывают влияние на чувствительность к коррозионному растрескиванию титановых сплавов. Хотя общая основа была установлена, очевидно, что требуется дальнейший экспериментальный и особенно теоретический анализ. Таким образом, представленный обзор следует рассматривать как прогресс в этом направлении несомненно, что некоторые дискуссионные практические и теоретические факторы в будущем будут преданы забвению. Необходимо подчеркнуть, что многие проблемы КР для специфических пар сплав/среда были решены вскоре после их открытия. Это не означает, однако, что такие проблемы не возникнут в будущем, но можно надеяться, что этот обзор будет полезен при распознании таких проблем. Субкритический рост трещин может происходить по механизму иному, чем при КР. Наиболее важным является рост усталостных трещин. В последние годы много внимания уделялось рассмотрению аналогии между коррозионным растрескиванием и коррозионной усталостью имеются указания и на взаимосвязанность этих процессов. При применении титановых сплавов в авиационно-космической технике и при подвод-  [c.431]

NOp, наблюдается некоторое ускорение процесса пленкообразования продолжительность выделения водорода сократилась с 10—12 до 3—4 мин, уменьшились бпд, плИ коррозионная стойкость фосфатной нленки. Влияние остальных добавок из данной группы нитратов на изучаемые факторы не обнаружилось.  [c.85]

Обзор математических моделей, описывающих процесс коррозионного разрущения металлических конструктивных элементов в случае сплошной коррозии, дан в работе И. Г. Овчинникова и X. А. Сабитова [100]. В обзоре рассмотрены детерминированные модели, учитывающие влияние некоторых факторов, характеризующих кинетику процесса, на скорость коррозии. Описан вероятностный подход к математическому моделированию коррозионного износа. В работе обсужден вопрос о возможной оценке адекватности используемых моделей по экспериментальным данным.  [c.177]


Все это, а также отзывы по второму изданию книги, поступившие в связи с широким техническим и научным обсуждением этого учебного пособия, в которых были высказаны пожелания о введении некоторых изменений и необходимости дополнения книги новыми главами, побудило автора переделать некоторые главы книги, сократить менее ценный материал и написать новые главы. Книга дополнена следующими главами глава VI Влияние конструктивных особенностей элементов аппаратов и сооружений на коррозионный процесс глава VII Разрушение металлов при совместном действии коррозионных и механических факторов глава XV Коррозия новых конструкционных металлов и сплавов . Вместо одной главы Пластические массы , помещенной во втором издании, дано пять глав по высокополимерным материалам. Коренной переработке подверглись главы II, III и IV по кинетике процессов электрохимической коррозии и пассивности металлов и глава IX по химической коррозии. Глава XXXI по углеграфитовым и древесным материалам значительно расширена в первой части, учитывая большое значение этих материалов в химическом машиностроении, и сокращена во второй части. Сокращены также глава I, поскольку вопросы строения металлов и растворов подробно рассматриваются в различных учебниках, и глава XVI Металлические защитные покрытия и химические методы обработки , поскольку эти способы защиты в химическом машиностроении неэффективны.  [c.4]

Карпенко экспериментально показал некоторое снижение усталостной кривой в коррозионно-инертной среде, содержащей поверхностно активные вещества, по сравнению с такой же кривой, полученной на воздухе. Отсюда он делает вывод, что начальная стадия разрушения металла при коррозии под напряжением обязана адсорбционно-расклинивающему эффекту поверхностно активных элементов коррозионной среды и проявляется в образовании ультрамикротрещин, которые в дальнейшем развиваются за счет обычного коррозионного процесса, протекающего в них. По мнению Карпенко, одним из важных факторов, по-видимому в пользу его точки зрения, являются эксперименты, в которых не было обнаружено влияние анодной поляризации на усталостную прочность стали.  [c.40]

Видимое проявление коррозионного растрескивания состоит в появлении трещин, которые напоминают хрупкое разрушение, поскольку их распространение сопровождается небольшой пластической деформацией. Коррозионное растрескивание, вызывающее в пластичном материале хрупкое разрушение, обусловлено действием определенной внентней среды, растягивающих напряжений достаточной величины п, как правило, спецификой металлургических факторов (химическим составом и структурой сплава). Состав, структура сплавов и свойства окружающей среды, которые оказывают определенное влняние на различные стадии процесса разрушения и которые рассматриваются в настоящем разделе, настолько многообразны, что трудно, если не сказать нереально, дать какое-либо простое объяснение влияния этих факторов для этого необходимо рассмотреть ряд различных механизмов. Однако это совсем не означает, что невозможна некоторая систематизация имеющихся в литературе но этому вопросу данных. Поэтому цель настоящего раздела состоит и том, чтобы показать, что на основе рассмотрения неирсрывиого ряда различных механизмов коррозионно-механического разрушения на отдельных этапах можно сформировать вполне определенные представления об обобщенном механизме коррозионного растрескивания [1]. Такой подход противоположен представлениям о неизменности механизма разрушения, следовательно, он помогает предположить существование специфических условий, вызывающих коррозионное растрескивание.  [c.228]

Хотя обширные исследования растворов нитратов и гидроокисей (вместе с некоторыми другими средами, также вызывающими коррозионное растрескивание [6]) показали, что, как правило, в этих средах растрескивание носит межкристаллитный характер, тем не менее обнаружены случаи транскристаллитного разрушения ферритных сталей. Вероятно, механизм разрушения в этих случаях сильно отличается от механизма межкристаллитного разрушения в коррозионных средах, рассмотренных выше. Очевидно, в некоторых случаях транскристаллитное разрушение может возникать по механизму, связанному с образованием активных участков под действием пластической деформации (например, разрушение окисной пленки), в других случаях оно может быть обусловлено понижением поверхностной энергии (возможно, из-за адсорбции водорода). Такие системы подробно не исследованы с точки зрения влияния на указанные. процессы механического фактора, чтобы сделать какое-либо окончательное суждение на этот счет. Транскристаллитное кооррозионное растрескивание малоуглеродистых сталей как указывается, имеет место в раствмах H N [29], содержащих 2,6—3,5 г/л H N в растворах Fe 3, и хлоридных шламах, содержащих окиси и гидроокиси трехвалентного железа при 316 С  [c.250]

Влияние внутренних факторов проявляется в старении и изнашивании материалов, воздействии рабочей среды. Воздейг ствие рабочей среды, кроме коррозионного и эрозионного разрушения узлов и деталей арегатов, проявляется во влиянии на рабочие характеристики агрегата давления и температуры, среды. Частота срабатывания и переходные процессы определяют режим работы агрегата и в некоторых случаях существенно влияют на работоспособность КУ.  [c.134]

Любопытно, что подобный порядок в значении сопротивления коррозионной усталости не совпадает с порядком значений коррозионных потерь для таких же, но ненапряженных образцов. По-видимому, в случае макроконтакта последний при наличии дополнительного фактора — напряжения сравнительно за короткое время обусловливал возникновение на поверхности образца коррозионного изъязвления, являющегося концентратором напряжения. Дно изъязвления под влиянием сильного анодного тока, возникающего как от макроконтакта, так и от концентрации напряжения, быстро заострялось и превращалось в трещину коррозионной усталости. Излом этих образцов от усталости при коррозии наступал всегда раньше, чем у образцов без контакта, и чаще находился на линии раздела медного слоя со сталью. Это и понятно, так как именно на границе двух металлов с неодинаковыми значениями электродных потенциалов в электролитах возникал максимальный ток коррозии. Иная картина наблюдалась у образцов с микроконтактами. Рассредоточенные катодные участки обусловливали одновременное возникновение большого числа микрокоррозионных изъязвлений. Последние способствовали равномерному рассредоточиванию приложенных механических напряжений по образцу. Это снижало разрушающее действие напряжения, и поэтому время, за которое развивалась трещина коррозионной усталости, увеличивалось. Не исключено также, что подобное распределение микрокатодов на поверхности образцов в условиях хорошей аэрации, возникающей от вращения образцов, может также приводить к их пассивированию и, следовательно, к некоторому торможению процесса коррозионной усталости.  [c.240]


Каким образом возникают окисные частицы, когда металлы соприкасаются на воздухе пока неясно, ни один механизм не позволяет объяснить все имеющиеся данные. Согласно ранней теории Томлинсона [1], поверхности разрушаются вследствие молекулярного истирания и это приводит к образованию окисла в окислительной атмосфере. Другие исследователи считали, что фреттинг в основном ускоряет механизм окисления, вследствие чего затрудняется процесс механического удаления окисла из-за образования стабильной защитной окисной пленки. Позднее Улиг [8] модифицировал эту модель, считая, что некоторые частички металла могут образовываться по адгезионному механизму, но при этом не отвергал влияния коррозии, привлекая ее для объяснения влияния частоты колебаний [8]. С помощью такой модели было трудно объяснить уменьшение изнашивания с увеличением температуры и тогда Улиг предложил модель коррозионного воздействия. Согласно этой модели на стальной поверхности происходит физическая адсорбция кислорода, а окисел образуется в результате механической активизации соприкасающихся поверхностей. Авторы более современных теорий [12] обращают внимание на изменеиие сущности механизма фреттинга, особо подчеркивая сильное влияние адгезии на ранних стадиях и значение коррозионной усталости как фактора, способствующего дезинтеграции материала в зонах контакта. Более поздние стадии разрушения от фреттинга также объясняются с позиций микроусталостных процессов, а ие с позиции абразивного износа.  [c.299]


Смотреть страницы где упоминается термин Влияние некоторых факторов на коррозионные процессы : [c.120]    [c.79]    [c.38]    [c.12]    [c.43]    [c.430]    [c.148]   
Смотреть главы в:

Керамическая материалы для агрессивных сред  -> Влияние некоторых факторов на коррозионные процессы



ПОИСК



Влияние N-процессов

Процессы коррозионные



© 2025 Mash-xxl.info Реклама на сайте