Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общий случай движения системы отсчета

Общий случай движения системы отсчета  [c.162]

Сейчас мы рассмотрим самый общий случай движения твердого тела по отношению к одной фиксированной (основной) системе отсчета. Таким движением является движение свободного твердого тела. Это движение, оказывается, тоже будет слагаться из серии мгновенных винтовых движений. К такому выводу приводит теорема Шаля, которая по отношению к свободному телу играет ту же роль, что и теорема Эйлера — Даламбера по отношению к твердому телу, имеющему неподвижную точку ( 10, п. 1), и которая нами уже была рассмотрена для случая плоскопараллельного движения ( 9, п. 2).  [c.153]


Общий случай сложения движений. Рассмотрим п систем отсчета, движущихся одна относительно другой (рис. 1.1, г) первая система (координаты х,, t/i, 2i) движется относительно нулевой (координаты Хд, у , 2о) вторая система (координаты Хз, у , г ) — относительно первой системы . .. последняя, п-н система (координаты х , у , г ) — относительно ( — 1)-й (координаты x -i, уп-и  [c.34]

Теперь мы можем перейти к общему случаю произвольного движения п систем отсчета одна относительно другой. В связи с тем, что любое движение в каждое мгновение может быть представлено как сумма поступательного движения и мгновенного вращения, а поступательное движение само может быть представлено парой вращений, можно ввести промежуточные системы отсчета и заменить произвольное мгновенное движение п систем только мгновенными вращениями т систем одна относительно другой (т п). Поэтому все, что говорилось выше о ело-  [c.363]

Преобразования Галилея Напомним, что эти преобразования основаны на предположениях, что длина тел не зависит от движения и время течет одинаково в различных инерциальных системах отсчета. Однако в предыдущем параграфе было показано, что в действительности это не так течение времени и длина тел зависят от системы отсчета — выводы, являющиеся неизбежным следствием постулатов Эйнштейна. Поэтому мы вынуждены отказаться от преобразований Галилея, или, говоря точнее, признать, что они — лишь частный случай каких-то более общих преобразований.  [c.190]

В общем случае нахождение абсолютного ускорения представляет собой сложную задачу. Поэтому мы ограничимся только частным случаем, когда движущаяся система отсчета вращается относительно неподвижной , вокруг неподвижной оси с постоянной угловой скоростью. Примером этого случая могут служить движения тел в земной вращающейся системе отсчета. (Годовое движение Земли относительно Солнца происходит с гораздо меньшей угловой скоростью, и поэтому в большинстве случаев его можно не принимать во внимание.)  [c.345]

Мы рассмотрели два случая относительного движения когда скорость лежит в плоскости, проходящей через ось вращения, и когда она нормальна к этой плоскости. В общем случае произвольно направленную относительную скорость ф мы можем разложить на две составляющие одну (v"), лежащую в плоскости ОАВС, проходящей через ось вращения, и другую ( " ), нормальную к этой плоскости (рис. 167). Для каждой из этих составляющих справедливы результаты, полученные нами выще следовательно, они справедливы и для v в целом. Поэтому, когда точка движется произвольным образом со скоростью относительно системы отсчета, вращающейся с постоянной угловой скоростью О), абсолютное ускорение точки  [c.352]


Любое движение жесткой системы отсчета можно рассматривать как поступательное движение плюс вращение. После изучения чисто поступательного движения системы перейдем к случаю чистого вращения. Общая задача представляет собой суперпозицию этих двух задач.  [c.124]

В этом заключается теорема Кориолиса. Особо важное значение имеет гироскопический член он не имеет аналога в соответствующей теореме, относящейся к скорости движущейся частицы. Теорему Кориолиса мы получили как частный случай общей теории движения в подвижной системе отсчета но ее, разумеется, можно получить без особого труда и непосредственно, не обращаясь к общей теории.  [c.189]

Уравнения движения. Рассмотрим случай, когда изменяемое тело состоит из собственно твердого тела (корпуса) и материальной точки массы ш, которая перемещается внутри корпуса. Предполагается, что движение всей системы начинается из состояния покоя. Движение точки относительно корпуса считается заданным в том смысле, что в системе отсчета, жестко связанной с корпусом, координаты точки — известные функции времени. Фактически задача сводится к изучению совместного движения тела (корпуса) в жидкости и точки при наличии нестационарных голономных связей. В соответствии с принципом освобождаемо-сти от связей (см., например, [4]), движение составного тела в идеальной жидкости (система тело + жидкость + точка) можно интерпретировать как классическую задачу о движении в жидкости твердого тела (система тело + жидкость) при действии некоторых заданных внутренних сил, в общем случае зависящих от времени. Указанные силы, очевидно, представляют собой не что иное, как силы  [c.465]

Рассмотрим наиболее общий случай движения твердого тела, когда оно является свободным и может перемещаться как угодно по отношению к системе отсчета ОххУ г (рис. 180). Установим вид уравнений, определяющих закон рассматриваемого движения. Выберем произвольную точку А тела в качестве полюса и проведем через нее оси Ax iy[z i, которые при движении тела будут перемещаться вместе с полюсом поступательно. Тогда положение тела в системе отсчета Ох Угг будет известно, если будем знать положение полюса Л, т. е. его координаты Xia Ууа, ia, и положение тела по отношению к осям Ax[y iZ[, определяемое, как и в случае, рассмотренном в 60, углами Эйлера ф, i 3, 0 (см. рис. 172 на рис. 180 углы Эйлера не показаны,чтобы не затемнять чертеж). Следовательно, уравнения движения свободного твердого тела, позволяющие найти его положение по отношению к системе отсчета ОххУ г в любой момент времени, имеют вид  [c.153]

Наиболее общим случаем движения твердого тела по отношению к данной системе отсчета является произвольное движение свободного тела. Это двимсение будет рассмотрено в 12 после изучения сложного движения твердого тела.  [c.138]

Возвращаясь к общему случаю подвижных систем отсчета, т. е. неинерциальных, вспомним основное уравнение динамики для движения материальной точки в таких системах (1. 12). Механика движения в таких системах относительного движения отличается от механики абсолютного движения, а стало быть — движения в инерциаль-ных системах, необходимостью учета, наряду с реальными, физическими силами, еще и псевдосил — эйлеровых сил инерции — переносной и кориолисовой. В расчет должны приниматься эйлеровы силы инерции всех точек и всех частиц, составляющих рассматриваемую механическую систему, сплошное тело.  [c.39]

Нужно учесть, что эта разность ускорений может зависеть не только от того, с каким ускорением иеинерциальная система отсчета движется относительно инерциальной, но и от того, как данное тело движется в неинерциальной системе отсчета рассмотрев только один частный случай, например, когда данное тело покоится в неинерциальной системе отсчета, естественно, мы найдем ответ только для данного частного случая чтобы получить достаточно общий ответ на вопрос о величине сил инерции в разных неннерциальных системах отсчета, нам придется сопоставить ускорения данного тела в двух системах отсчета, во-первых, при различных движениях неинерциальной си-  [c.342]


Связывая систему отсчета с вращающимся телом, получим вращающуюся систему отсчета. Поскольку вращающиеся системы суть системы, движущиеся относительно инерциальной с некоторым (радиальным) ускорением, го в них должны также действовать силы инерции. Нахождение сил инерции в общем случае представляет собой сложную задачу. Поэтому мы ограничимся только частным случаем, когда система вращается относительно неподвижной (инерциальной системы) с постоянной угловой скоростью. В отличие от случая поступательного движения системы, рассмотренного выше, во вращающейся системе отсчета проявляются два рода сил инерции центробежные силы, определяемые только положением тела в системе отсчета и не зависящие от скорости тела в этой системе, и кориолисовы силы, которые, наоборот, зависят от скорости движения тела, но нз зависят от его положения в системе отсчета. На покоящееся во вращающейся системе отсчета тело действует только центробежная сила, на движущееся тело —и центробежная и корио-лисова. С действием этих сил можно ознакомиться на примере аттракциона карусель . Кому приходилось кататься на карусели, хорошо помнят действие силы, стремящейся выбросить  [c.202]

В главе XIV мы уже видели, в чем состоит задача о сложном движении точки, и рассмотрели теоремы сложения скоростей и сложения ускорений для того частного случая, когда переносное движение, т. е. движение подвижной системы отсчета, — поступательное. Теперь мы докажем эти теоремы в общем случае, т. е. не делая никаких частных предполоя5ений о переносном движении.  [c.350]


Смотреть главы в:

Курс теоретической механики для физиков Изд3  -> Общий случай движения системы отсчета



ПОИСК



Движение в случае G2 ВТ

Движение системы

Общий случай

Общий случай движения системы

Отсчет

Система отсчета

Система отсчета (см. Отсчета система)



© 2025 Mash-xxl.info Реклама на сайте