Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм пластической деформации в материалах с кристаллической структурой

Методы измерения твердости материалов прочно вошли в практику контроля качества и проведения научных исследований. Научная и практическая ценность этих измерений заключается в том, что по величине твердости можно судить о многих важных характеристиках свойств материалов, а часто и определять их. Из результатов многочисленных исследований следует, что твердость материала зависит от его кристаллической структуры и связана со многими механическими и физическими характеристиками, с пределами текучести, прочности, усталости, с ползучестью и длительной прочностью, сжимаемостью, коррелируется также с некоторыми магнитными и электрическими свойствами. Измерение твердости является простым, но высокочувствительным методом исследования механизма пластической деформации, старения, наклепа, возврата, рекристаллизации и других фазовых и структурных превращений.  [c.22]


Имеется много различных дислокационных механизмов образования зародышевых трещин [8—13]. Зарождение трещины скола при негомогенной пластической деформации в металлах объясняется тем, что у конца задержанной полосы скольжения возникает большая концентрация сдвиговых напряжений, по величине превышающая силы межатомной связи материала. Поэтому возникает трещина сдвига. Необходимое напряжение достигается блокированием дислокаций у барьеров, которыми могут служить границы зерен в поликристаллах или частицы твердой второй фазы в загрязненных металлах. В зависимости от кристаллической структуры материала возможны и другие механизмы зарождения трещины (рис. 3). Общим для всех механизмов зарождения трещин является то, что этот процесс — следствие пластической деформации.  [c.23]

Молекулярное взаимодействие, обусловленное взаимодействием атомов на сближенных участках поверхностей гребешков микронеровностей, приводит к нарушению термодинамического равновесия кристаллических решеток на контактирующих участках и наиболее полно проявляется при схватывании твердых тел. В этих условиях в полной мере проявляется механизм, объясняемый адгезионно-деформационной теорией [26]. Очаги микросхватывания в режиме ИП развиваются в более мягком, чем материал чугунного или хромированного кольца, тонком слое меди, не вызывая глубинного повреждения основного металла. Вновь образуются активизированные пластической деформацией участки поверхности они свободны от разделяюш,их пленок при наличии смазки и пульсирующих нагрузок при контактировании с микронеровностями контртела. Возникают площадки с высокой температурой и микрогальванические пары, активизирующие диффузионные и электрохимические процессы. Это способствует молекулярному переносу и миграции ионов меди на ювенильные поверхности. Обогащение тонких слоев поверхности трения медью создает особую структуру граничного слоя, обеспечивающего при определенных режимах минимальные износ и коэффициент трения, а также способствующего реализации правила положительного градиента по глубине материала [2].  [c.163]

Изучение структурных и энергетических закономерностей пластической деформации в приповерхностных слоях материалов в сравнении с их внутренними объемными слоями имеет важное значение для развития теории и практики процессов трения, износа и схватывания. При этом следует отметить, что. поверхностные слои кристаллических материалов имеют, как правило, свои специфические закономерности пластической деформации. Так, например, в работе [11 при нагружении монокристаллов кремния через пластичную деформируемую среду силами контактного трения было найдено, что в тонких приповерхностных слоях на глубине от сотых и десятых долей микрона до нескольких микрон величины критического напряжения сдвига и энергии активации движения дислокаций значительно меньше, чем аналогичные характеристики в объеме кристалла. Было также показано [2], что при одинаковом уровне внешне приложенных напряжений по поперечному сечению кристалла в радиусе действия дислокационных сил изображения эффективное напряжение сдвига значительно выше, чем внутри кристалла. Поэтому поверхностные источники генерируют значительно большее количество дислокационных петель и на большее расстояние от источника по сравнению с объемными источниками аналогичной конфигурации и геометрии при одинаковом уровне внешних напряжений. Высказывалось также предположение, что облегченные условия пластического течения в приповерхностных слоях обусловлены не только большим количеством легкодействующих гомогенных и различного рода гетерогенных источников сдвига [3], но и различной скоростью движения дислокаций у поверхности и внутри кристалла [2]. Аномальное пластическое течение поверхностных слоев материала на начальной стадии деформации может быть обусловлено действием и ряда других факто-зов, например а) действием дислокационных сил изображения 4, 5] б) различием в проявлении механизмов диссипации энергии на дислокациях, движущихся в объеме кристалла и у его поверхности причем в общем случае это различи е, по-видимому, может проявляться на всех семи фононных ветвях диссипации энергии (эффект фононного ветра, термоупругая диссипация, фонон-ная вязкость, радиационное трение и т. д.) [6], а также на электронной [71 ветви рассеяния вводимой в кристалл энергии в) особенностями атомно-электронной структуры поверхностных слоев и их отличием от объема кристалла, которые могут проявляться во влиянии поверхностного пространственного заряда и дебаевского радиуса экранирования на вели-  [c.39]


О физике ползучести написано множество превосходных книг и статей. Однако из всех последних методологических трудов наиболее информативен и полезен труд Эшби [2], посвященный картам механизмов деформации. Различают шесть независимых способов, в соответствии с которыми поли-кристаллический материал может деформироваться, сохраняя свое строение. Во-первых — это бездефектное течение. Оно наступает, если превысить теоретическое сопротивление сдвигу. Остальные пять требуют наличия дефектов кристаллической структуры. Дислокации являются источником двух видов пластического течения дислокационного скольжения и дислокационной ползучести. Движение точечных дефектов вызывает течение, которое относится к двум другим независимым видам внутризеренному и околозернограничному течению. Шестой вид течения обусловлен двойникованием, обычно его значение для инженерных решений невелико. "Поля" механизмов деформации чистого никеля представлены на рис. 2.8, дающем в кратком обобщении изложение этой концепции. Поля нанесены на карту в координатах нормированного напряжения течения (напряжение отнесено к модулю  [c.64]

Скорость разрушения определяется кооперативными процессами, прол исходящими на микро- и макроуровнях, и поэтому необходим учет как прочности межатомной связи в бездефектной кристаллической решетке, так и характеристик прочности и пластичности материалов с дефектами — дислокациями, вакансиями и т. п. на микро- и макроуровнях с учетом влияния исходной структуры на характеристики прочности и пластичности. В связи со сложностью поставленных механикой разрушения задач прямого эксперимента недостаточно для определения общих закономерностей разрушения материала с трещиной, а требуется привлечение подходов физики разрушения, позволяющих вникнуть в суть механизма явления. Но и это о мало, так как необходимо учитывать сложные по своему содержанию микропроцессы, оказывающие неоднозначное влияние на макропроцессы, определяющие в конечном итоге скорость разрушения. Переход от микроразрушения к макроразрушению может быть достигнут путем учета масштабного подобия. Это требует привлечения к а 1ализу механики трещин наряду с физикой прочности также теории подобия и анализа размерностей [28, 29]. Для применения теории подобия необходимо иметь большой объем предварительных данных и конкретных физических идей, позволяющих вывести уравнение, определяющее процесс. Если уравнение не удалось вывести, то применяют анализ размерностей [29]. Подходы механики разрушения позволяют рассматривать процесс разрушения как автомодельный, что упрощает решение задач механики трещин, ибо в условиях автомодельности необходимым и достаточным условием обеспечения подобия локального разрушения является использование только одного критерия подобия. К тому же теория подобия является своеобразной теорией эксперимента, так как позволяет установить, какие параметры следует определять в опыте для решения той или иной задачи [28]. Неучет этого фактора при определении критериев линейной механики разрушения привел к известным трудностям и к необходимости раздельного определения статической Ki . динамической Кы и циклической /С/с трещиностойкости. Однако каждый из указанных критериев, определенных экспериментально, без учета подобия локального разрушения, даже при одном и том же виде нагружения часто не дает сопоставимых значений из-за влияния степени стеснения пластической деформации на микромеханизм разрушения.  [c.41]

Механизм усталостного разрушения. Вначале под действием циклической нагрузки накапливаются пластические деформации в наиболее слабых и наиболее напряженных зернах материала. На первом этапе существенную роль играют дислокационные искажения кристаллической структуры. Затем в этих зернах появляются линии скольжения. При повторных нагружениях число этих линий скольжения увеличивается и постепенно они сливаются, образуют полосы скольжения и субмикро-скопияеские трещины. Слиянием субмикроскопических трещин и созданием условий для развития прогрессирующей макроскопической трещины заканчивается первая стадия усталостного разрушения. Число циклов, приходящееся на эту стадию (называемую иногда подготовительной или инкубационной) составляет 6J—90% от полного  [c.149]



Смотреть страницы где упоминается термин Механизм пластической деформации в материалах с кристаллической структурой : [c.67]    [c.134]    [c.121]    [c.333]    [c.149]   
Смотреть главы в:

Пластичность и разрушение твердых тел Том1  -> Механизм пластической деформации в материалах с кристаллической структурой



ПОИСК



411—416 — Структура кристаллическая

Деформация механизм

Деформация пластическая

Деформация пластическая механизм

Кристаллические

Кристаллический материал

Материал пластический

Материал структура

Пластическая деформаци

Структура механизмов



© 2025 Mash-xxl.info Реклама на сайте