Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики управляемости при полете вперед

ХАРАКТЕРИСТИКИ УПРАВЛЯЕМОСТИ ПРИ ПОЛЕТЕ ВПЕРЕД  [c.747]

В настоящем анализе влияние аэродинамики фюзеляжа на устойчивость вертолета не рассматривается детально учитывается лишь устойчивость по углу атаки, создаваемая стабилизатором. Как будет показано, неустойчивость несущего винта по углу атаки отрицательно влияет на характеристики управляемости при полете вперед, и стабилизатор используется для уменьшения этой неустойчивости. Момент подъемной силы стабилизатора от вертикальной скорости равен — - VS l a ZB, или, в форме вертолетных коэффициентов,  [c.751]


Рассмотрим характеристики управляемости вертолета при полете вперед. Вследствие поступательной скорости появляются новые силы, действующие на вертолет центробежные, возникающие при повороте вектора скорости вертолета относительно связанной системы координат аэродинамические, воздействующие на фюзеляж и хвостовое оперение силы на несущем винте, пропорциональные характеристике режима. В результате характеристики управляемости вертолета при полете вперед и на режиме висения существенно различны. При полете вперед вертикальное и продольно-поперечное движения связаны через силы на несущем винте и ускорения фюзеляжа. Тем не менее будем вновь предполагать возможным раздельный анализ продольного движения (продольная скорость, угол тангажа и вертикальная скорость) и бокового движения (поперечная скорость, угол крена и угловая скорость рыскания). Такой подход дает удовлетворительное описание динамики вертолета, хотя на самом деле все шесть степеней свободы взаимозависимы.  [c.747]

Вертолет с довольно большим стабилизатором может быть в целом статически устойчив по углу атаки. В этом случае при полете вперед действительные корни движений по тангажу и вертикали переходят в колебательные с коротким периодом и высоким демпфированием, а длиннопериодические корни обычно перемещаются в левую полуплоскость с небольшим увеличением периода и демпфирования. Таким образом, динамика вертолета со стабилизатором при полете вперед характеризуется короткопериодическим колебательным движением, обусловленным демпфированием по вертикали и тангажу, и длиннопериодическим колебательным движением, устойчивость которого обусловлена статической устойчивостью по углу атаки. Стабилизатор, достаточно большой для того, чтобы обеспечить высокий уровень статической устойчивости, не всегда приемлем на практике, особенно при бесшарнирном несущем винте. Его эффективность снижается на малых скоростях вследствие влияния винта и фюзеляжа. Тем не менее он настолько улучшает характеристики управляемости, что большинство одновинтовых вертолетов снабжается стабилизатором.  [c.755]

Характеристики управляемости. На одном из вертолетов при полете вперед отмечалось запаздывание (длительностью несколько секунд) появления максимальной перегрузки после максимального отклонения продольного управления [G.137], Это свидетельствует о неустойчивости по углу атаки и означает, что для удержания ускорения на желаемом уровне летчик должен отклонить ручку управления в противоположном направлении, за балансировочное положение. Отмечались также высокий уровень вибраций и исчезновение усилий на ручке управления.  [c.764]


На режиме висения характеристики продольной управляемости вертолета продольной схемы несколько лучше, чем для одновинтового ввиду больших демпфирования и эффективности управления боковая управляемость оказывается несколько хуже из-за меньшего демпфирования по рысканию и больших моментов инерции по рысканию и крену. При полете вперед вертолет продольной схемы сильно неустойчив по углу атаки из-за  [c.770]

Таким образом, система управления с обратной связью по моменту на втулке уменьшает прямую реакцию несущего винта на отклонение управления, движения вала и порывы ветра. Парирование влияния порывов ветра и в общем уменьшение устой-чивости по скорости желательны. При полете вперед также уменьшается неустойчивость несущего винта по углу атаки, что существенно улучшает продольную управляемость вертолета. Реакция на непосредственное изменение циклического шага уменьшена, но винтом можно управлять, прикладывая моменты к гироскопу. Обратная связь по моменту на втулке уменьшает демпфирование угловых перемещений несущего винта, но она также уменьшает реакцию на угловую скорость поворота вала, которая связывает продольное и поперечное движения. При наличии демпфирования во вращающейся системе координат гироскоп создает обратную связь по угловым скоростям тангажа и крена, заменяющую демпфирование несущего винта. Характеристики винта с обратной связью по моменту на втулке подобны характеристикам бесшарнирного винта. Обратная связь уменьшает реакцию винта на внешние возмущения и сами силы на несущем винте, обусловленные движением вертолета (а также устойчивость по скорости и неустойчивость по углу атаки), но обеспечивает демпфирование угловых перемещений, заменяющее демпфирование от несущего винта. Если обратная связь по моментам реализуется на бесшарнирном винте, то основным дополнительным соображением является выбор угла опережения управления в контуре обратной связи. Угол должен быть таким, чтобы продольное и поперечное движения вертолета и реакция на отклонение управления не были связанными. При большом коэффициенте усиления, желательном для улучшения характеристик системы, может оказаться недостаточным учет только низкочастотных (т. е. статических) реакций винта и гироскопа. Более того, при высоком коэффициенте усиления  [c.781]

Чем меньше изменяется центровка самолета, тем меньшие изменения при данном положении фокуса претерпевают устойчивость по перегрузке и характеристики управляемости. Поэтому для уменьшения изменения устойчивости по перегрузке сбрасываемые в полете грузы располагают вблизи центра тяжести, топливные баки размещают как впереди, так и позади центра тяжести и соответствующей программой выработки топлива обеспечивают минимум изменения центровки (минимум изменения устойчивости по перегрузке).  [c.149]

Важными характеристиками управляемости вертолета являются отклонения продольного управления, требуемые для изменения скорости и перегрузки. Статическая устойчивость по скорости имеет место, если отклонению ручки от себя соответствует увеличение скорости, т. е. (36,s/dp, < 0. Этот градиент отклонения ручки непосредственно связан с производной устойчивости по скорости Ма. Обычно при увеличении поступательной скорости вертолета плоскость концов лопастей заваливается назад, и для балансировки вертолета требуется отклонение вперед плоскости управления (разд. 15.1). На малых скоростях полета, однако, некоторые вертолеты имеют неустойчивый градиент отклонения ручки по скорости. Для приемлемых характеристик маневренности при полете вперед требуется положительный градиент отклонения ручки по перегрузке d 0. Анализ, приведенный в предыдущем разделе, показывает, что градиент отклонения управления связан с производными устойчивости по углу атаки М-л и демпфирования Mq и, следовательно, с условием о кривизне кривой нормального ускорения. Для приемлемых характеристик маневренности требуется некоторый минимальный градиент или максимальная эффективность управления.  [c.763]


Демпфирование увеличивалось путем применения гидростабилизирующего стержня, с помощью которого осуществлялась запаздывающая обратная связь по угловой скорости. Величина Мд При ЭТОМ увеличивалась в 3 раза относительно исходного значения. Запаздывающая обратная связь по угловой скорости существенно улучшала продольную управляемость при взятии ручки на себя . Без стабилизирующего стержня нормальное ускорение нарастало слишком долго, угловое ускорение было постоянным в течение первых 1,5 с, а кривизна кривой нормального ускорения была положительной в течение 2,5 с. С увеличением продольного демпфирования в 2—3 раза были получены приемлемые характеристики управляемости. Угловое ускорение быстро уменьшалось, и угловая скорость становилась постоянной. Кривая нормального ускорения сразу начинала подниматься вверх, а ее кривизна становилась отрицательной менее чем за 2 с. Увеличение демпфирования уменьшило частоту и увеличило Бремя удвоения амплитуды длиннопериодических колебаний они даже становились слабо устойчивыми при увеличении демпфирования в 2,7 раза относительно исходного. Поперечная управляемость при полете вперед оставалась удовлетворительной при введении запаздывающей обратной связи по 1угловой скорости крена. Увеличение поперечного демпфирования уменьшило установившуюся реакцию угловой скорости крена, которая обычно слишком велика. Начальное значение углового ускорения крена не изменилось, обратная связь улучшила длиннопериодическую реакцию и дала более постоянную реакцию угловой скорости крена на поперечное отклонение ручки.  [c.766]

ТОГО, при полете вперед периодически изменяются с периодом 2n/Q. Это создает серьезную проблему для конструкторов необходимо каким-то способом уменьшить изгибающие моменты в комлевых частях и снизить напряжения в лопастях до допустимого уровня. Если лопасти жесткие, как у пропеллера, то все аэродинамические нагрузки воспринимает конструкция. У гибких же лопастей под действием аэродинамических сил возникают значительные изгибные колебания, в результате которых аэродинамические силы могут изменяться так, что нагрузка лопастей существенно снизится. Таким образом, при полете вперед азимутальное изменение подъемной силы лопасти вызывает ее периодическое движение с периодом 2n/Q в плоскости, нормальной к плоскости диска (плоскости взмаха). Это движение называют маховым. С учетом инерционных и аэродинамических сил, обусловленных маховым движением, результирующие нагрузки лопасти в комлевой части и момент крена, передающийся на фюзеляж, существенно уменьшаются. Обычно для снижения нагрузок втулки несущих винтов снабжают горизонтальными шарнирами (ГШ). При маховом движении лопасть поворачивается вокруг оси ГШ как твердое тело (см. рис. 1.4). Так как на оси ГШ момент равен нулю, на фюзеляж он вообще не может передаться (если относ оси ГШ от оси вращения равен нулю), а изгибающие моменты в комлевой части лопасти должны быть малы. Несущий винт, у которого имеются горизонтальные шарниры, называют шарнирным винтом. В последнее время на вертолетах с успехом применяют несущие винты, не имеющие ГШ и называемые беешарнирными. При использовании высококачественных современных материалов комлевую часть лопасти можно сделать прочной и в то же время достаточно гибкой, чтобы обеспечить маховое движение, которое снимает большую часть нагрузок в комле лопасти. Вследствие значительных центробежных сил, действующих на лопасти, маховые движения у шарнирных и бесшарнирных винтов весьма сходны. Естественно, нагрузка комлевой части лопасти у бесшарнирных винтов выше, чем у шарнирных, а увеличение момента, передаваемого на втулку, оказывает значительное влияние на характеристики управляемости вертолета. В целом маховое движение лопастей уменьшает асимметрию в распределении подъемной силы по диску винта при полете вперед. Поэтому учет махового движения имеет принципиальное значение в исследовании аэродинамических характеристик несущего винта при полете вперед.  [c.155]

Для режима висения ( i = О, пв = 0) уравнения сводятся к полученным в разд. 15.3.1. При полете вперед возникают инерционные силы, обусловленные центробежными ускорениями при повороте вектора скорости вертолета относительно связанных осей. Это в основном вертикальное ускорение, вызываемое угловой скоростью тангажа, и поперечное ускорение, создаваемое угловой скоростью рыскания (заметим, что эти силы связывают вертикальное и продольно-поперечное движения). Поскольку задачей анализа является определение характеристик управляемости вертолета при полете вперед, необходимо ввести еще ряд допущений. Будем пренебрегать инерционной взаимосвязью крена и рыскания (/л 2 = 0), а также малыми величинами HtganB и g sinans. Не будем учитывать малые балансировочные эйлеровы углы, что упрощает выражения для угловых скоростей р = (fB, q = г = ifB-  [c.749]

Военный стандарт США MIL-H-8501A определяет характеристики управляемости в полете и на земле для военных вертолетов. Этот стандарт является хотя и несколько устаревшим, но все же наиболее полным собранием норм летных характеристик. В отношении статической устойчивости стандарт определяет минимальное и максимальное значения начального градиента усилий на ручке в продольном и поперечном направлениях и требует, чтобы он был всегда положителен. В продольном управлении градиенты усилия и отклонения ручки по скорости полета должны соответствовать устойчивости умеренная степень неустойчивости допускается только для ПВП в диапазоне малых скоростей полета, хотя вообще она нежелательна. При полете вперед требуются устойчивые градиенты отклонения поперечного управления и педалей по углу скольжения, путевая устойчивость и устойчивость по поперечной скорости. Для ППП путевое и поперечное управления должны иметь устойчивые градиенты по усилиям и по отклонениям. Оговорены также усилия на рычагах управления на переходных режимах, паразитные перекрестные связи по этим усилиям, запасы управления и другие факторы. Характеристики динамической устойчивости при полете вперед оговорены в стандарте MIL-H-8501A в терминах периода и демпфирования длиннопериодического движения. На рис. 15.15 суммированы требования для эксплуатации по ПВП и ППП.  [c.785]



Смотреть страницы где упоминается термин Характеристики управляемости при полете вперед : [c.612]    [c.64]    [c.297]   
Смотреть главы в:

Теория вертолета  -> Характеристики управляемости при полете вперед



ПОИСК



Управляемость



© 2025 Mash-xxl.info Реклама на сайте