Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Звуковые методы контроля

Звуковые методы контроля  [c.473]

Разновидностью голографического метода контроля является акустическая голография. В этом методе в результате интерференции двух звуковых волн (опорной и отраженной от объекта) получается картина звукового поля, по которой восстанавливают внутреннее изображение объекта контроля с имеющимися в нем дефектами.  [c.211]

Эти недостатки устранены в фотоэлектрическом люминесцентном методе контроля герметичности. При этом методе контроля герметичности в качестве первичных индикаторов лучистой энергии используют фотоэлектрические датчики, с помощью которых лучистая энергия флуоресценции преобразуется в электрическую. Фотоэлектрические датчики во много раз чувствительней самого острого зрения. Они вырабатывают электрические сигналы, пропорциональные величине неплотности. Эти сигналы после соответствующего усиления могут записываться самописцами, вырабатывать звуковой сигнал или другую информацию, характеризующую герметичность контролируемого объекта.  [c.117]


Акустические колебания - это механические колебания среды. При акустическом контроле обычно используют колебания с частотой 0,5...25 МГц, т. е. ультразвуковые. Поэтому большинство акустических методов являются ультразвуковыми, хотя известны случаи использования и колебаний звуковой частоты, в частности импедансный метод контроля, используемый при контроле паяных, клееных или сваренных контактной сваркой конструкций.  [c.350]

Разновидностью является метод контроля, при котором поле рассеяния от несплошности (дефекта) с помощью искателя сразу извещается в виде звукового или светового сигнала (рис. 6.7, б).  [c.388]

Ультразвуковой метод контроля качества сварных соединений основан на способности ультразвуковых волн проникать на большую глубину материалов, отражаясь при попадании на границу двух материалов с различной звуковой проницаемостью (например, металл-шлак, металл-газ). В качестве источника ультразвуковых волн используется способность кристаллов (кварца, сегнетовой соли, титаната бария) преобразовывать электрические колебания в механические. При ультразвуковом методе контроля (рис. 74) щуп-излучатель посылает через сварной шов импульсы ультразвуковых волн, которые при встрече с дефектом отражаются от него и улавливаются щупом-приемником. Эти импульсы фиксируются на экране электронно-лучевой трубки дефектоскопа в виде пиков, что свидетельствует о наличии дефектов.  [c.177]

Ультразвуковой метод контроля позволяет обнаруживать внутренние дефекты, залегающие на любой глубине поковки. Ультразвуковые колебания, вызванные в металле вибратором, проходят через всю толщину металла и, дойдя до противоположной грани ( дна ) поковки, отражаются от нее. Отраженные ультразвуковые колебания после преобразований и усиления в специальных устройствах поступают на экран осциллографа в виде сигнала, появляющегося с правой стороны экрана. Если в толще металла поковки попадается дефект, то ультразвуковые колебания отражаются от него, не дойдя до дна , а так как путь звуковой волны до дефекта короче, чем до дна , то сигнал от дефекта появится на экране раньше и левее донного сигнала, что будет служить признаком наличия дефекта в поковке.  [c.174]

Электролиты, нормы потерь 717 Электролиты-суспензии 320 Электроосаждение, стадии 347 Электрохимический метод контроля 116 Элемент поверхности, тип 48 Эмали токопроводящие 564 Эматалирование 17, 498, 499 Эмульгаторы 96 Эмульсионная очистка 89 Эмульсионные композиции Л05 Эффект звукового ветра 351  [c.735]


На промышленных предприятиях получили распространение еще два акустических метода контроля, работающих в звуковом диапазоне частот это импедансный и метод свободных колебаний.  [c.211]

Магнитные методы контроля основаны на обнаружении полей магнитного рассеяния, образующихся в местах расположения дефектов при намагничивании контролируемых заготовок. Достаточно прост метод магнитного порошка. На поверхность намагниченной (например, соленоидом) заготовки наносят железные опилки. Над местом расположения дефекта создаются скопления порошка. Этим способом можно обнаружить невидимые невооруженным глазом поверхностные трещины, внутренние трещины, залегающие не глубже 15 мм, расслоение металла, поры, включения шлака. При индукционном. методе магнитный поток в заготовке наводят электромагнитом переменного тока, а дефекты обнаруживают катушкой искателя, в которой полем рассеяния создается ЭДС, вызывающая звуковой или оптический сигнал на индикаторном устройстве.  [c.436]

Величина исследуемой заготовки не ограничена. На современном оборудовании контролируются поковки толщиной до 130 мм. Проверяемая поковка должна иметь одинаковое сечение на протяжении всей проверяемой площади, чтобы пучок звуковых волн проходил через одинаковую толщину металла во всех точках. Испытываемые образцы должны иметь также осевую непрерывность. Поэтому данный метод контроля применим для поковок постоянного сечения.  [c.187]

Процесс распространения ультразвуковых волн определяется только материальными свойствами среды — ее плотностью, упругостью, вязкостью, внутренними механическими напряжениями, перемещением отдельных участков этой среды и т. д. Любое, самое малое изменение свойств прежде всего скажется на условиях распространения звуковой волны. Вместе с тем ультразвуковые волны малой интенсивности, распространяясь в какой-либо среде, не вызывают сами по себе никаких остаточных изменений в пей, так как уплотнения и разрежения, связанные с прохождением ультразвука, ничтожно малы. Поэтому все материальные свойства или их изменения можно исследовать и мерить при помощи ультразвуковых (или звуковых) волн, посылая их через исследуемую среду и наблюдая затем изменения, которые претерпевает волна. Акустические методы контроля состояния среды и измерения свойств вещества оказываются очень удобными, так как они достаточно точны, быстры и, что самое главное, пе нарушают структуру исследуемого образца или ход исследуемого процесса они не требуют взятия специальных проб, а могут производиться па месте — в реакторе, в тигле, на работающей детали или конструкции, при любых температурах и давлениях.  [c.58]

Отсюда можно сформулировать восьмое требование тепловозный двигатель должен быть полностью уравновешен. По нормам и методам контроля шум дизеля оценивается величиной уровня звукового давления, вычисляемого по формуле (ОСТ 24.060.12—72)  [c.60]

Контроль ультразвуком. Этот метод контроля основан на способности звуковых колебаний, имеющих частоту более 20 кгц, распространяться с определенной скоростью в различных средах, и в частности в металле.  [c.233]

Ультразвуковые методы контроля основаны на использовании звуковых колебаний очень высокой частоты (свыше 20 кГц). Они служат для проверки качества изделий и неразрушающего контроля материалов. Ультразвуковые методы, кроме того, можно использовать и для определения размеров деталей. Один из таких способов, названный акустическим-фазовым контролем, заключается в анализе звуковых волн, отраженных от поверхности объекта (звуковые волны источник излу-  [c.472]

Акустические (ультразвуковые) методы основаны на свойстве упругих колебаний распространяться и взаимодействовать — отражаться, преломляться, поглощаться и рассеиваться на нарушениях сплошности контролируемой среды. Акустические методы контроля охватывают диапазон частот колебаний от единиц герц до десятков мегагерц и подразделяются на звуковые — от единиц герц до 20 кГц и ультразвуковые — свыше 20 кГц.  [c.142]

Контроль с применением приборов основан на получении информации в виде электрических, световых, звуковых и других сигналов о качестве проверяемых ектов при взаимодействии их с физическими полями (электрическими, магнитными, акустическими и др.). В зависимости от принципов работы контрольных средств все известные методы неразрушающего контроля в соответствии с ГОСТ 18353—79 подразделяются на акустические, капиллярные, магнитные, оптические, тепловые, методы контроля течеисканием, электрические и электромагнитные (методы вихревых токов).  [c.163]


На рис. 19.9, г оба максимума приходятся па краевые волны, которые можно получить по рис. 19.8, если отражатель располагается наклонно и имеет благоприятную форму кромки для распространения краевых волн (острую и по возможности перпендикулярную к оси луча). По смещению эхо-импульса при сканировании выявляется также и наклонное положение. Звуковой луч в месте дефекта должен быть очень концентрированным (сфокусированным), чтобы возбуждать по возможности только кромку. Для этого применяют фокусирующие искатели. Все же из-за этого применимость метода контроля ограничивав ется небольшими расстояниями, для которых еще можно сконструировать рациональные фокусирующие искатели. При распо-  [c.389]

Применение звуковых и ультразвуковых колебаний занимает, как известно, видное место среди новых методов исследования свойств веществ и воздействия на различные физические и химические процессы, используемые в промышленности. Эффективность ультразвуковых методов контроля и интенсификации технологических процессов столь велика, а пределы применения этих методов столь широки, что каждый год работы в области ультразвука раскрывает все более и более значительные перспективы его промышленного использования.  [c.5]

Выход на цифропечатающее устройство предусматривают во всех системах контроля этим методом, когда требуется регистрация большого числа данных. Запись на бумажной или магнитной ленте применяют в тех случаях, когда может возникать необходимость просмотра материала для анализа. Кроме того, предусматривают световую и звуковую сигнализацию появления эмиссии.  [c.317]

По частотному признаку все рассмотренные акустические методы делят на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном (до нескольких десятков килогерц), ультразвуковом диапазонах частот ко вторым — колебания в высокочастотном (от нескольких сотен килогерц до 50 МГц) ультразвуковом диапазоне частот. Высокочастотные методы обычно называют ультразвуковыми. Для контроля металлов преимущественно используют высокочастотные методы.  [c.99]

Испытание целостности металла шва сварных соединений, работающих под вакуумом, гелиевыми течеискателями осуществляется с применением специальной аппаратуры. Принцип этого метода заключается в том, что в газах, окружающих испытываемую арматуру, с помощью масс-спектрометра обнаруживается гелий, используемый для испытания как газ, обладающий наивысшей проникающей способностью. При контроле используются течеискатели ГТИ. Установка снабжена устройством, создающим звуковой сигнал при обнаружении течи, после чего можно проводить наблюдение по стрелке прибора.  [c.218]

Методы измерения и контроля шума машин. Методы измерения шума неподвижных машин регламентированы ГОСТ 12.1.024—81. Подлежащие определению шумовые характеристики включают в себя октавные уровни звуковой мощности Lp октавные уровни звукового давления L на опорном радиусе  [c.415]

Так, весьма эффективен контроль массивных блоков из пластмассы. На сравнительно низких частотах (поскольку затухание УЗК в пластмассах велико) может быть получена высокая чувствительность и обнаружены мельчайшие неоднородности. Здесь оказывается преимущество гомогенной изотропной среды (пластмасса) перед гетерогенной анизотропной (сложный сплав). В последнем случае рассеяние УЗК структурными составляющими сплава приводит к повышению уровня шумов и к необходимости понижения чувствительности, при контроле же пластмассы такого рассеяния не наблюдается, чувствительность может быть использована полностью и индикатор реагирует не только на зону звуковой тени, но и на некоторое изменение интенсивности звукового поля за небольшим дефектом, что в известной мере компенсирует ограничение чувствительности метода вследствие дифракции.  [c.342]

Иммерсионный вариант контроля, т. е. метод сквозного прозвучивания, основан на том, что ультразвуковые колебания от излучателя, расположенного соосно с приемником, распространяются в исследуемом материале, расположенном между излучателем и приемником, воспринимаются приемником и фиксируются индикатором. При наличии дефекта на пути распространения колебаний за дефектом образуется область так называемой звуковой тени и интенсивность принятых колебаний резко падает, что отмечается индикатором. В практике ультразвуковой дефектоскопии наибольшее распространение получили дефектоскопы УДМ-1М, УДМ-3, ДУК-66П и др.  [c.250]

Лналил звуковой эмиссии, порождаемый выходящим через не-силошности газом, используют как метод контроля герметичности. В этом случае объект прослушивается прибором типа микрофона, работающего в ультразвуковом диапазоне.  [c.149]

Капиллярные методы контроля основаны на капиллярном проникновении жидкостей (пенетрантов) в дефекты и их контрастном изображении. Эти методы применяются для выявления поверхностных дефектов, в основном в изделиях из неметаллов и сплавов, для которых невозможно использовать магнитные методы контроля. Капиллярный контроль осуществляют следующим образом. После подготовки (очистки, обезжиривания) поверхности контролируемой детали на нее наносят индикаторную жидкость, например смесь керосина со скипидаром с добавкой красителя (рис. 183). Жидкость проникает внутрь дефектов. Чтобы дефекты лучше и быстрее заполнялись, при нанесении жидкости повыщают или понижают давление, воздействуют на деталь звуковыми или ультразвуковыми колебаниями или статической нагрузкой, подогревают жидкость, напыляют ее в виде аэрозоля. После нанесения жидкость с поверхности убирают (вытирают или сдувают), но в дефектах она остается. Далее струей газа, кистью или щеткой припудриванием наносят на поверхность проявитель. Это может быть, например, раствор каолина (белой глины) в этиловом спирте. Проявитель высыхает, в него всасывается из дефектов индикаторная жидкость, окрашивая места дефектов. Проявитель может быть в виде порошка (сухой способ). Можно наносить в качестве проявителя растворы люминофоров (в летучем растворителе) - тогда дефект будет светиться в ультрафиолетовых лучах (беспорошковый способ). Если добавить в индикаторную жидкость краситель и после очистки от нее поверхности нагреть деталь, то жидкость выступит на кромки дефекта, испарится, а затвердевший краситель покажет расположение де-  [c.357]


По принципу отражения ультразвуковых волн работают ультра-. звуковые дефектоскопы УЗД-12, УЗД-НИИМ-2 и УЗД-ГН. Ультра-, звуковой метод выгодно применять для контроля соединений большой толщины и особенно соединений, выполненных электро-. шлаковой сваркой.  [c.593]

Величину зерна определяли металлографически.м. методом (производили не менее 100 измерений, а затем вычисляли среднее значение). Кроме того, величина зерна оценивалась также по шкале ГОСТ 5639—51. Далее образцы подвергали ультра-звуково.му контролю и сопоставляли данные. металлографического и ультразвукового методов исследования.  [c.208]

При экранирующих или теневых методах (глава 12), известных по рентгеновской диагностике, несплошность материала обнаруживается по ее действию как экранирующего препятствия для распространения звука от излучателя к приемнику. Такие методы называют также прозвучива-нием. При этом первичной измеряемой величиной является амплитуда звукового давления, регистрируемая приемником. При теневом методе можно работать и с непрерывными звуковыми волнами, н с импульсами. Ов возник исторически как первый метод ультразвукового контроля (непрерывными волнами) по- аналогии с рентгеновским просвечиванием (просвечивание—прозву-чивание). Поэтому применяется и историческое название — метод контроля интенсивности, так как при просвечивании рентгеновскими или гамма-лучами почернение используемой пленки пропорционально интенсивности излучения. При ультразвуковом теневом методе первичной измеряемой величиной является амплитуда звукового давления, пропорциональная квадратному корню из интенсивности, если применяют,, как почти во всех случаях, пьезоэлектрические приемники..  [c.189]

Ультразвуковая дефектоскопия (УЗД) - один из наиболее эффективных методов неразрушающего контроля. Дефектоскопия основана на принципе передачи и приема ультразвуковых импульсов, отражаемых от дефекта, расположенного в металле. Высокочастотные звуковые воЛны распространяются по сечению контролируемой детали или узла направлешо и без заметного затухания, а от противоположной поверхности, контактирующей с воздухом, полностью отражаются. Для возбуждения и приема колебаний используются прямой и обратный пьезоэлектрический эффекты титаната бария (кварца). Генератор электрических ультразвуковых колебаний возбуждает пьезоэлектрический излучатель (передающий щуп), который через слой жидкости связан с поверхностью детали. Механические колебания, полученные от действия переменного магнитного поля на пьезоэлектрическую пластинку излучателя, распространяются по толще металла и достигают противоположной стороны сечения. Отражаясь, возвращаются и через жидкую среду возбуждают в пьезоэлектрическом приемнике (приемном щупе) электрические колебания, которые после усиления высвечивают на индикаторе характер прохождения колебаний. Если препятствий, мешающих прохождению колебаний, не оказалось, амплитуды прямого и отраженного импульсов одинаковы. При наличии дефекта импульсных пиков будет три, причем отраженный от дефекта - меньший (рис. 4.4). Во время работы дефектоскопа колебания возбуждаются не непрерывно, а короткими импульсами. Существует несколько тапов дефектоскопов и наборов щупов.  [c.157]

Звук (шум), генерируемый и во время простого нагружения образцов армированных пластиков, может быть индикатором появления разрывов или трещин. Изменение интенсивности и уровня звуковых импульсов сопровождает развитие трещин в структуре, эти области разрушения могут быть определены с помощью специальной аппаратуры. Такая методика не относится, конечно, к области неразрушающего контроля. Для ее осуществления необходимо приложить нагрузку, которая, в свою очередь, часто приводит к снижению свойств и даже к разрушению исходной структуры материала. Установлено, что во время гидроиспытаний при уровне нагрузки ниже разрушающей может быть получена корреляция между предельной нагрузкой и уровнем шумов. Испытания проводились для сосудов высокого давления и корпусов ракетных двигателей. А. Грин и др. [20] использовали метод акустической эмиссии для комплексной проверки камер ракетных двигателей Поларис АЗ , полученных методом намотки стеклонитью.  [c.475]


Смотреть страницы где упоминается термин Звуковые методы контроля : [c.72]    [c.54]    [c.360]    [c.149]    [c.405]    [c.9]    [c.275]    [c.3]    [c.339]    [c.521]    [c.97]    [c.164]    [c.218]    [c.99]    [c.373]    [c.1068]    [c.117]   
Смотреть главы в:

Справочник по композиционным материалам Книга 2  -> Звуковые методы контроля



ПОИСК



Метод звуковой

Методы контроля



© 2025 Mash-xxl.info Реклама на сайте