Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение масс в абсолютно твердом теле

РАСПРЕДЕЛЕНИЕ МАСС В АБСОЛЮТНО ТВЕРДОМ ТЕЛЕ  [c.40]

Кроме моделей с распределенной массой и жесткостью, широко применялись дискретные модели. В одних случаях системы рассматривались как непрерывные совокупности безмассовых упругих элементов, связанных с тачечными массами или абсолютно твердыми телами. В других случаях система представлялась в виде цепи абсолютно твердых тел, связанных дискретными упругими элементами. Иногда одновременно учитывались как распределенные, так и сосредоточенные массы.  [c.90]


Неизменяемой, системой называется система материальных точек, в которой расстояние между двумя любыми точками постоянно. При непрерывном распределении масс такая система дает идеальный образ твердого тела и называется абсолютно твердым телом. Абсолютно твердых тел, ни при каких условиях не изменяющих свою форму, в природе не существует. Однако во многих случаях при изучении движения реальных твердых тел их деформациями можно практически пренебречь и рассматривать эти тела как абсолютно твердые, что существенно упрощает все расчеты. Реальные твердые тела, способные деформироваться, а также тела жидкие и газообразные представляют собой изменяемые системы материальных точек.  [c.48]

Аксиомы статики характеризуют свойства сил, приложенных к абсолютно твердому телу или одной точке. Но они не учитывают материальных свойств тела или точки, характеризуемых их массой, а для тела — еще распределением массы в теле, влияние которых существенно при их движении.  [c.12]

Все перечисленные силы распределены (как правило, неравномерно) по объему или по поверхности звена. Так как перемещение всякого элемента звена механизма вследствие упругой деформации этого звена на много порядков меньше его перемещения, обусловленного кинематикой механизма, то при исследовании динамики механизма можно считать его звенья абсолютно твердыми телами. Поэтому движение не изменится, если заменить распределенные массовые и поверхностные силы их равнодействующими. После такой замены сила тяжести звена будет приложена в центре его масс, а сила поверхностного давления — в центре давления, лежащем внутри контура, ограничивающего поверхность, подверженную давлению. Так как в отличие от поля тяготения поле сил инерции неоднородно, то положение точки приложения равнодействующей распределенных по массе тела элементарных сил инерции все время изменяется в процессе движения. Поэтому распределенные силы инерции удобнее представить главным вектором сил инерции, приложенным в центре масс, и главным моментом сил инерции.  [c.37]

Основы аксиоматики МСС изложены в 3, причем установлено, что произвольная часть среды, заключенная в объеме V и ограниченная поверхностью 2, в любое мгновение t находится в динамическом равновесии в смысле Даламбера сумма всех массовых сил (включая силы инерции) и сил, действующих на поверхности 2, равна нулю. Если плотность среды р, массовая сила Р и ускорение каждой частицы w в момент t известны, то объемная сила, действующая на массу в объеме йУ, равна р(Р—w) V эта сила, проинтегрированная по объему V, в сумме с проинтегрированной по поверхности 2 силой действующей на площадку с нормалью V на равна нулю. Значит, при составлении уравнения движения среду в объеме V можно считать замороженной , т. е. считать ее абсолютно твердым телом, па внутренний единичный объем которого действует объемная сила р(Р— у), а на поверхности — распределенный вектор силы с плотностью Р на единицу площади. Поэтому в векторной форме уравнение движения массы любого объема V с соответствующей поверхностью 2 имеет вид  [c.117]


Схематизация ракеты (или другого летательного аппарата) в внде твердого тела переменной массы предполагает, что корпус ракеты является абсолютно жестким, а явление плескания топлива в баках (если ракета жидкостная) полностью отсутствует. При этом как масса, так и распределение масс внутри ракеты могут изменяться вследствие выработки запаса топлива, что влечет изменение моментов инерции и положения центра масс ракеты.  [c.78]

Мерой инертности тел является масса. Она может быть сосредоточенной, если в качестве идеализированного тела принимается материальная точка (точечное тело), и распределенной — в случае тела конечных размеров, в частности абсолютно твердого. Масса тела в мире Ньютона всегда неизменна и доступна непосредственному измерению.  [c.28]

Математическое описание упругих колебаний тела может быть сделано посредством неоднородных дифференциальных уравнений в частных производных. Однако во многих случаях упругие системы с распределенными параметрами при некоторых условиях могут быть заменены системами с сосредоточенными параметрами, движение которых описывают системы обыкновенных дифференциальных уравнений. Замена системы с распределенными параметрами системой с параметрами сосредоточенными возможна всегда, если в условиях данной задачи одни части тела можно считать абсолютно жесткими, а другие — упругими, но лишенными массы. Тогда упругая система распадается на совокупность твердых неупругих тел, соединенных упругими связями, не имеющими  [c.221]

Рассмотрим теперь условия равновесия абсолютно твердого тела под действием пространственной несходящейся совокупности сил. Подчеркнем, что под равновесием в случае твердого тела понимается его относительный покой в данной системе координат, а не движение по инерции , которое в случае твердого тела, не подверженного действию внешних сил и пар, в зависимости от его формы и распределения в нем массы может быть очень сложным.  [c.50]

В зависимости от того, какие тела соударяются и с какой скоростью, приходится пользоваться разными моделями. Машину конструируют всегда так, чтобы удар был прямым и центральным (вектор относительной скорости и нормали к поверхностям тела в точке соударения проходит через центры тяжести соударяющихся тел). Это связано с тем, что при косом ударе приходится решать значительно более сложные задачи. Накопленный опыт по решению таких задач мал, и поэтому конструкторы почти не используют косой удар. Основы такого расчета приведены в гл. II. В случае прямого центрального удара применяют модели 1) абсолютно твердого тела 2) твердого тела с местными деформациями 3) многомассной системы 4) с распределенными массами и заданной формой деформированного состояния 5) с распределенными параметрами.  [c.165]


Смотреть страницы где упоминается термин Распределение масс в абсолютно твердом теле : [c.44]    [c.126]    [c.466]    [c.168]   
Смотреть главы в:

Вибрации в технике Справочник Том 1  -> Распределение масс в абсолютно твердом теле



ПОИСК



Вал с распределенной массой

Масса тела

Распределение масс

Тело абсолютно твердое

Тело абсолютное твердое



© 2025 Mash-xxl.info Реклама на сайте