Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построение нелинейных разрешающих уравнений МКЭ

Таким образом, простейший нелинейный вариант теории многослойных анизотропных оболочек с учетом локальных эффектов построен. Уравнения равновесия (8.23), граничные условия (8.31), соотношения упругости (8.13), (8.29) и деформационные соотношения (8.10), (8.11) полностью разрешают поставленную задачу.  [c.173]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]


В достаточно регулярных случаях условия (18.7)—(18.8) смыкаются с известными соотношениями принципа максимума и методов динамического программирования. В самом деле, сравнивая, например, соотношения (13.7) и (18.5), замечаем, что в регулярных случаях роль функции ф может играть потенциал V, фигурирующий в уравнении Беллмана. Однако и в этих случаях функция ф, удовлетворяющая нужным условиям, подчас может быть найдена проще, причем здесь не оговариваются жесткие априорные ограничения класса. С другой стороны, описываемый здесь подход нашел эффективные приложения и в нерегулярных случаях, в частности, при построении оптимальных скользящих режимов. Таким путем для этих случаев были разработаны методы, позволившие разрешать нелинейные вариационные задачи об управлении в ситуациях, характерных для приложений, и, в частности, были опубликованы методы решения таких задач, которые возникают при исследовании проблем оптимального снижения и торможения летательных аппаратов. Заметим, что решение ряда сложных задач (в частности, для нелинейных систем третьего порядка) было найдено описанными методами в замкнутой форме. Так же были исследованы нерегулярные обстоятельства, характерные для задач об управлении движением точки переменной массы в центральном поле, причем были выяснены дискуссионные вопросы, связанные с этой задачей. Далее, была исследована задача о реактивной стабилизации твердого тела с неподвижной точкой при условии минимума расхода топлива, причем снова были обнаружены и изучены экзотические оптимальные движения.  [c.219]

К уравнениям агрегатов необходимо добавить соотношения, описывающие совместимость агрегатов в двигателе, к которым относятся уравнения баланса расходов, давлений и мощностей. В результате получается система алгебраических уравнений, которая разрешается относительно любого параметра двигателя уу = = Р ( / , XI, г,). Так как система имеет высокий порядок (количество уравнений определяется схемой двигателя) и большинство уравнений нелинейные, то даже при применении ЭВМ решение очень сложное и требует больших затрат времени. Поэтому этот метод применяется только для анализа статических характеристик отдельных агрегатов и для построения дроссельных и высотных характеристик двигателя.  [c.40]

Простейший нелинейный вариант теории осесимметричных многослойных анизотропных оболочек построен. Нормальная система уравнений (1.52), граничные условия (1.62), (1.63), соотаошения (1.54), (1.55), (1.57)—(1.59) и система линейных алгебраических уравнений (1.60) полностью разрешают поставленную задачу. Как видим, задача определения напряженно-деформированного состояния многослойных анизотропных оболочек вращения сведена к нелинейной краевой задаче (1.52), (1.62), (1.63), что позволяет применить к ее решению стандартный, хорошо изученный на более простых задачах подход.  [c.27]



Смотреть главы в:

Метод конечных элементов в проектировании транспортных сооружений  -> Построение нелинейных разрешающих уравнений МКЭ



ПОИСК



Нелинейность уравнений

Построение уравнений

Разрешающее уравнение

Уравнение нелинейное



© 2025 Mash-xxl.info Реклама на сайте