Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение опасности электрохимической коррозии

ОПРЕДЕЛЕНИЕ ОПАСНОСТИ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ  [c.100]

Коррозия деталей сборочного инструмента и приспособлений приводит к преждевременному их износу. Разрушение металлов и сплавов с поверхности может быть под влиянием химического или электрохимического воздействия среды. При электрохимической коррозии разрушающей средой являются электролиты, например, водные растворы кислот, оснований, солей. Химическая коррозия является следствием воздействия на металл сухих газов, неэлектролитов (бензин, смолы). По характеру внешнего проявления различают следующие виды коррозии поверхностную, когда разрушение происходит почти равномерно по всей поверхности точечную, развивающуюся из определенных центров — очагов коррозии, и наиболее опасную коррозию — распространяющуюся вглубь по границам зерен металла.  [c.294]


Следует заметить, что электрохимическая гетерогенность сварного соединения, обусловившая избирательный характер коррозии, сама по себе не является достаточным условием появления наиболее опасного вида разрушения типа коррозионного растрескивания, возникающего только при определенных сочетаниях  [c.219]

Смешанные ингибиторы тормозят обе электродные реакции. Они менее опасны, чем чисто анодные замедлители, и в ряде случаев могут не приводить к росту интенсивности коррозии при недостаточной их концентрации. При преимущественном торможении катодного процесса их свойства приближаются к свойствам катодных ингибиторов, т. е. они становятся безопасными. Поэтому главное, что должен выявить ускоренный метод — это механизм действия ингибитора с тем, чтобы избежать опасных последствий, которые может вызвать анодный ингибитор. Это можно установить электрохимическим способом, или определением  [c.220]

Определенные виды легких заполнителей отличаются также содержанием агрессивных по отношению к стали веществ. В основном это относится к различного рода шлакам, в которых, как правило, имеется сера в разных неустойчивых состояниях. Соединения серы обычно стимулируют коррозию. Котельные шлаки, кроме того, содержат несгоревшие частицы угля. Уголь составляет со сталью гальваническую пару, в которой сталь играет роль анода, т. е. подвергается электрохимическому растворению. Это обстоятельство резко усиливает опасность кор-  [c.130]

Однако анодные ингибиторы при неблагоприятных условиях, когда концентрация их в электролите понижается настолько, что ее уже недостаточно для того, чтобы запассивировать всю поверхность, могут, как было показано выше, усилить скорость коррозии в тех местах, где коррозионный процесс не приостановлен. Объясняется это эффектом внутренней анодной поляризации, возникающей за счет неполной пассивации электрода. Когда электрод не полностью запассивирован, происходит дифференциация электрохимических реакций, обусловливающих коррозионный процесс, по поверхности и небольшая активная часть поверхности подполя-ризовывается анодно за счет увеличения эффективности катодного процесса на запассивированной части электрода. В этом отношении анодные ингибиторы, если их неразумно применять, из-за частичной пассивации электрода и локализации анодного процесса представляют определенную опасность.  [c.83]

Определенную опасность представляют повреждения плотного защитного магнетитового поля. Если суммарные напряжения столь велики, что произойдет пластическая деформация, при которой в защитном магнетитовом слое образуются трещины, то в местех повреждения при наличии растворенных в воде кислорода или диоксида углерода будет происходить интенсивное коррозионное разрушение металла по механизму электрохимической коррозии.  [c.193]


В связи с тем, что суммарный коррозионно-механический износ является результатом многих процессов, а также с тем, что внимание специалистов было сосредоточено главным образом на химической коррозии наименее стойких деталей из цветных металлов или сплавов (например, вкладышей подшипников коленчатого вала), опасность и значение электрохимической коррозии долгое время недооценивались. Это помимо всего прочего привело к путанице в терминах и определениях, принятых в научно-тех1нической литературе по коррозии и защите металлов и шо нефтепродуктам. В табл. 4 приведены основные понятия и термины применительно к проблеме нефтепродукты и коррозия по их состоянию на се-Г0ДНЯШ1НИЙ день. Как видно, несмотря на сопутствующие процессы необходимо четко различать коррозионные свойства нефтепродуктов (их коррозионную агрессивность или, наоборот, противокоррозионные свойства), связанные в основ1Ном с химическими процессами и зависящие от способности самих нефтепродуктов вызывать или предотвращать химическую коррозию металла, и их защитные свойства, т. е. способность защищать металл от электрохимической коррозии в присутствии электролита. В соответствии с этим необходимо, в частности, различать противокоррозионные присадки к нефтепродуктам, добавляемые для улучшения их коррозионных свойств, и маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов. Как показано  [c.15]

Приведенные данные позволяют сделать также важные практические выводы в плане коррозионной защиты. Во-первых, скорость коррозии латуни, определенная гравиметрически по убыли в массе образца, не отражает истинного размера и опасности коррозионных разрушений, так как при этом не учитывается масса восстановленной меди. Поэтому гравиметрические коррозионные испытания обязательно должны сочетаться с измерениями коэффициента селективного растворения по всем компонентам сплава. Во-вторых, недостаточная глубина катодной защиты может интенсифицировать обесцинкование, вместо того чтобы подавить его. Трудности контроля защитного потенциала в различных зонах теплообменного оборудования, необходимость поддержания достаточно высокой плотности катодного тока, опасность нарушения сплошности пассивирующих оксидных пленок при катодной поляризаций приводят к тому, что электрохимическая катодная защита латуней, бронз и других сплавов, склонных к СР, применяется крайне ограничено. По этим же причинам практически не используется протекторная защита латуни [245].  [c.191]

Несмотря на то, что общие принципы корродирования подземных трубопроводов, их электрохимической защиты от почвенной коррозии и электрометрических измерений, направленных на выявление текущего состояния ЭХЗ и изоляционных покрытий, достаточно хорошо известны, при практической реализации ЭХЗ и контроля технического состояния трубопроводов остается еще много вопросов, требующих выяснения. Одним из них является вопрос о реальных возможностях электрометрических обследований в части определения наличия и степени опасности коррозионных повреждений трубопроводов.  [c.107]

Исследования электрохимических закономерностей изменения окислительно-восстановительного потенциала раствора 10%Си504+10% НаЗО, и проявления в нем межкристаллитной коррозии стали показали, что только при определенном соотношении этих значений протекает процесс межкристаллитной, а не общей коррозии металла [2, 3]. Так, если окислительно-восстановительный потенциал раствора имеет близкое или более высокое значение, чем потенциал пробоя, потенциал, при котором нарушается окисная пленка на стали, то. появляетс я опасность возникновения общей коррозии ее. Поэтому представляется нецелесообразной рекомендация [4] применения раствора, содержащего  [c.4]

Многообещающая система защиты была введена в практику Джевонсом и Пинноком в 1916 г. для защиты большой системы газопроводов в Стаффордшайре, где блуждающие токи уже причинили до этого значительный вред. Трубы были соединены между собой так, что получился хороший электрический контакт между секциями и прекрасная защита снаружи. Затем в области анодных секций (только эти части страдали от коррозии) были погружены в землю в сырых местах присоединенные к трубам длинные шины. Были также сделаны, где это было нужно, специальные подушки из коксовой золы, насыщенной водой. Эти шины в количестве 200 шт. представляют собой настоящие аноды системы, которые и подвергаются быстрой коррозии, теряя иногда до одного дюйма в год своей длины. Коррозия защищенного таким образом трубопровода практически прекратилась. После десятилетнего опыта можно было считать, что опасность от блуждающих токов прошла. Среднее количество ремонтов упало с 34 за год (средняя цифра за 11 лет, предшествующих установке системы) до 3 за 1928 г. Это, повидимому, показывает, что защита трубопроводов по отношению к коррозии может быть обеспечена даже в районе, изобилующем блуждающими токами, при условии устройства продуманной системы. Можно сомневаться, была ли бы система удовлетворительной при установке ее людьми без электрохимического понимания вопроса. Нужна была осмотрительность в определении правильных мест для шин. Неблагоразумное же применение их в катодной зоне могло быть причиной увеличения общего тока, воспринимаемого системой.  [c.46]


Данные непосредственных определений защитных свойств различных цементов во время испытаний (осмотр состояния арматуры в бетоне, потеря в весе) подтверждают возможность оценки этих свойств электрохимическими методами. Так, при длительных испытаниях железобетонных образцов в различных средах (в 3 /о-ном растворе ЫаС1 влажной атмосфере, содержащей ЗОг агрессивном грунте водопроводной неагрессивной воде) стальные электроды под покрытиями из гипсоглиноземистого и расширяющегося цементов, а также портландцемента с добавкой 5—10 /о СаСЬ имели значительные коррозионные повреждения. Скорость коррозии стали под такими покрытиями в зависимости от условий испытаний составила 0,005—0,009 г м -ч. При этом коррозия имела месте как при относительно небольшой (15 и 25 мм), так и значительной (50 мм) толщине защитного слоя бетона. Коррозионные повреждения в этом случае носят местный характер (отдельные язвы и каверны) и являются наиболее опасными. Эта опасность возрастает еще и потому, что образовавшиеся под покрытием продукты коррозии создают з бетоне большие внутренние напряжения, которые в последующем приводят к его растрескиванию.  [c.45]


Смотреть страницы где упоминается термин Определение опасности электрохимической коррозии : [c.511]   
Смотреть главы в:

Справочник по защите подземных металлических сооружений от коррозии  -> Определение опасности электрохимической коррозии

Защита силовых кабелей от коррозии  -> Определение опасности электрохимической коррозии



ПОИСК



В опасное

Коррозия определение

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте