Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразователи тепловой энергии

Преобразователи тепловой энергии  [c.132]

Рассмотрим тепловую трубу (ТТ) как термодинамическую систему, обменивающуюся энергией с окружающей средой (рис. 1), контрольная поверхность которой — корпус [1]. Рабочим телом в такой системе является теплоноситель, участвующий в термодинамическом цикле. В общем случае на основе 1-го закона термодинамики можно считать, что разность между подведенным и отведенным тепловыми потоками превращается в другой вид энергии qn—Qk=L. Эффективность термодинамического цикла ТТ — преобразователя тепловой энергии можно оценить с помощью термического КПД г]т = (<7и—Понятие термического КПД тепловых труб позволяет разделить их на три группы 1) преобразователи тепловой энергии в другие ее виды (генераторы) (т)т=>0) 2) классические ТТ, предназначенные в основном для передачи тепловой энергии (т)т = 0) 3) активного регулирования с использованием дополнительных внешних источников энергии нар, включая системы, обладающие холодильным эффектом (г]т=<0) .  [c.7]


Рассматриваемые комбинированные установки, сочетающие в себе высокотемпературный прямой и низкотемпературный машинный преобразователи тепловой энергии, позволяют при высоком уровне надежности установки в целом более полно использовать энергетический потенциал изотопного и ядерного источников теплоты.  [c.21]

Материал насосов для перекачки расплавленных металлов, термокатоды электронных устройств, катоды преобразователей тепловой энергии в электрическую  [c.19]

В качестве защитных покрытий чаще всего применяют тугоплавкие и жаростойкие материалы. Под жаростойкими обычно подразумеваются такие материалы, которые обладают способностью противостоять при высокой температуре химическому воздействию, в частности окислению, на воздухе или в иной газовой среде. Работы по использованию жаростойких материалов в современной технике в последнее время ведутся по двум основным направлениям. Первое, основывающееся на многолетнем опыте применения различных материалов в качестве огнеупоров в металлургической, химической и других отраслях промышленности, сводится к использованию в конструкциях и аппаратах отдельных элементов, изготовленных целиком из жаростойких материалов. Примером практического применения таких элементов могут служить вкладыши ракетных двигателей, каналы магнитно-гидродинамических преобразователей тепловой энергии в электрическую и др. [29, 30]. Второе направление — применение жаростойких материалов в качестве защитных покрытий, способных предохранять различные изделия от перегрева и поверхностной и межкристаллитной коррозии. Примером использования жаростойких соединений в качестве защитных покрытий могут служить керамические намазки, часто армированные стеклотканью, наносимые на внутреннюю поверхность насадок для истечения продуктов горения ракетного топлива, силицидные мате риалы, закрепляемые на изделиях из тугоплавких металлов с целью предохранения их от коррозии, и др. [31, 32]. Оба направления усиленно развиваются. Однако здесь целесообразно ограничиться лишь некоторыми вопросами, относящимися ко второму направлению, а именно — рассмотрением свойств и оценкой отдельных материалов с точки зрения их пригодности для защитных покрытий.  [c.39]

В полупроводниковых преобразователях тепловой энергии в электрическую коэффициент преобразования может быть доведен до величины порядка 10% и выше, в зависимости от температуры, а снижение температуры холодного спая по отношению к горячему может составлять несколько десятков градусов.  [c.338]


Тепловая труба может выполнять функции трансформатора теплового потока. В этом смысле тепловая труба — идеальный согласующий элемент между отдельными звеньями тепловых машин. В частности, открываются широкие возможности использования прямых преобразователей тепловой энергии в электрическую (термоэмиссионных и термоэлектрических с самыми различными источниками тепла).  [c.6]

Термоэмиссионные (термоионные и термоэлектронные) преобразователи тепловой энергии позволяют получать плотности мощности  [c.238]

ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э.— магнитогидродинамический генератор и термоэлектронный преобразователь.  [c.540]

В термоэмиссионных преобразователях преобразование тепловой энергии в электрическую основывается на явлении термоэлектронной эмиссии. Термоэлектронная эмиссия заключается в испускании нагретой поверхностью металла электронов в количестве, определяемом уравнением Ричардсона  [c.607]

Настоящее сообщение включает исследование защитных покрытий элементов конструкций новых источников тока — преобразователей тепловой и химической энергии в электрическую — при воздействии температур до 700° С. К защитным покрытиям таких источников тока предъявляется ряд специфических требований, которые ограничивают возможность применения покрытий из керамики, эмалей, стекла, органических и чисто кремнеорганических смол. Они должны иметь следующие свойства  [c.271]

Проведенные исследования дают возможность рекомендовать покрытия из органосиликатных материалов для защиты преобразователей тепловой и химической энергии в электрическую до температуры 700° С.  [c.275]

В 1964 г. был построен экспериментальный атомный реактор-преобразователь Ромашка мощностью 500 Вт, в котором тепловая энергия непосредственно преобразуется в электрическую.  [c.262]

Выделяющуюся при радиоактивном распаде нуклидов тепловую энергию превращают в электрическую двумя путями с применением полупроводниковых преобразователей (ТЭГ) и с применением ТЭП. Мощность изотопных источников тепла в основном определяется высокой стоимостью нуклидов и стоимостью защиты от ионизирующих излучений. Поэтому они предназначаются для питания автономных установок средней мощности. При выборе радионуклидов наиболее существенными критериями являются удельное энерговыделение, период полураспада, вид и спектр излучения, физико-химические свойства (температура плавления, природа химического соединения, совместимость с материалом капсулы н др.), степень радиационной опасности, стоимость, возможность получения в необходимых количествах и т. д.  [c.28]

К.п.д. в 2,5% невелик, но там, где это не важно, где тепловая энергия дешевая, а нагрев и охлаждение происходят автоматически, новый источник тока окажется очень полезным. Если несколько таких элементов с лампами-вспышками расположить на спутнике, он сможет служить настоящим космическим маяком ведь спутник все время вращается, то подставляя свои бока обжигающим лучам солнца, то погружая их в ледяной холод космического пространства. Обычные кремниевые батареи не способны развивать высокие напряжения, а повышать напряжение с помощью электрических преобразователей очень сложно.  [c.128]

В Институте атомной энергии им. И. В. Курчатова 14 августа 1964 г. вступил в эксплуатацию ядерный реактор-преобразователь Ромашка . Это первая в мире установка, в которой осуществлено непосредственное преобразование тепловой энергии ядер-ной реакции в электрический ток с помощью термоэлектрогенератора из полупроводниковых термоэлементов.  [c.111]

Двигатель Стирлинга представляет собой преобразователь энергии, относящийся к типу тепловых двигателей, совершающих механическую работу на выходном валу при подводе к ним тепловой энергии. Полезная работа в рабочем цикле Стирлинга совершается, как и в других тепловых двигателях, посредством сжатия рабочего тела при низкой температуре и расширения того же рабочего тела после нагрева при более высокой температуре. Основные термодинамические процессы, про-  [c.16]


Генераторная лампа является преобразователем энергии постоянного тока в энергию колебаний высокой частоты, которая поступает в нагреваемую деталь, превращаясь в тепловую энергию. Принцип действия электронной лампы основан на движении свободных электронов от катода к аноду в высоком вакууме под влиянием электрического поля.  [c.123]

В кислороде напряженность поля дуги ниже, чем в азоте, поэтому он как газ-преобразователь электрической энергии в тепловую менее эффективен. Однако вследствие активного протекания термохимических реакций при взаимодействии кислородной плазмы с металлом в процессе резки с использованием кислорода обеспечивается более высокая производительность резки (не только углеродистых, но и легированных сталей) при применении азота или воздуха. Кислород окисляет не только разрезаемый металл, он снижает стойкость катода и сопла по сравнению со стойкостью их на воздухе. Наибольший износ или разрушение этих деталей происходит в момент возникновения двойной дуги. Процесс плазменной резки с применением кислорода менее надежный и устойчивый, чем с применением воздуха.  [c.46]

Коэффициент полезного действия существующих термоионных преобразователей достигает около 15%. Его можно повысить до 20—25%. Поскольку анод преобразователя нагревается до высокой температуры, необходимо его охлаждать, а нагретый теплоноситель использовать для образования пара и приведения в действие турбины. Таким образом, реактор сможет давать электрическую энергию и механическую с выходом от вала турбины, а также воспроизводить в определенном соотношении новое горючее. При комбинированном использовании тепловой энергии реактора его коэффициент полезного действия может достигнуть 40—45%.  [c.188]

Все рабочие машины приводятся в движение машинами-двигателями, которые являются преобразователями тепловой, электрической и других видов энергии в механическую энергию.  [c.114]

Косвенное преобразование непрерывного электрического сигнала в непрерывное или дискретное механическое перемещение используется в тех случаях, когда выходная мощность прямых преобразователей оказывается недостаточной для перемещения больших масс рабочих органов систем автоматического управления и регулирования. Косвенное преобразование осуществляется с помощью промежуточного преобразователя энергии электрического тока. Примером такого преобразователя может служить термодинамический механизм врезных подач круглошлифовального станка, в котором энергия электрического тока превращается в тепловую энергию. Нагревательный элемент преобразователя выполнен в виде спирали, намотанной на металлический стержень. При прохождении тока стержень нагревается, удлиняется и толкает шлифовальную бабку, осуществляя тем самым поперечную подачу шлифовального камня. При прекращении подачи электрического тока на обогреватель рост температуры стержня, а следовательно, и перемещение его свободного конца прекращаются.  [c.64]

Выше уже упоминалось о разработке устройств, предназначенных для прямого преобразования тепловой энергии в электрическую на пироэлектриках. В принципе такой преобразователь — пироэлектрический кристалл — должен работать по циклу нагрев с выделением некоторой мощности на нагрузочном сопротивлении внешней цепи (которая обусловлена изменением поляризации кристал-  [c.108]

Низкотемпературная плазма (температура IOOOK) находит применение в газоразрядных источниках спета и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрическую и Б магиитогидродннамических (МГД) генераторах.  [c.290]

Всевозрастающий интерес ученых, инженеров и технологов к физике плазмы связан с необходимостью решения ряда важнейших фундаментальных и прикладных задач, в которых плазма должна выполнять сложную роль и высокотемпературного рабочего тела, и носителя электрических зарядов, и источника электромагнитных излучений в широком диапазоне длин воли, н электромагнитной силовой динамической системы, и активной среды с инверсной населенностью. К таким задачам относятся создание управляемых термоядерных реакторов, магиитогидродинамических преобразователей тепловой энергии в электрическую, электрореактивных плазменных ДЕ)И1 ателей для космических аппаратов, мощных лазеров на основе низкотемпературной плазмы сложного состава в качестве активной среды, гмазмохи-миЧеских реакторов, плазменно-технологических установок для плй вки резки, сварки и пайки металлов, нанесения различных покрытий и др.  [c.384]

H. д. используются в термоэмиссионных преобразователях тепловой энергии в электрическую и в термо-эмиссионных ключевых элементах. Иногда типичные для Н. д. распределения потенциала и плотности плазмы, характеризующиеся максимумами в прикатодной квазинейтральной плазме, образуются у катода само-стоят. дугового разряда. Эту область, расположенную между катодом и положит, столбом разряда, часто наз. пространством Н. д.  [c.350]

Низкотемпературная П. (Т 10 К) находит применение в газоразрядных источниках света и в газовых лазерах, в термозмиссионных преобразователях тепловой энергии в электрич. и в магнитогидродинамических генераторах, где струя П. тормозится в канале с поперечным магн. полем В, что приводит к появлению между верх, и ниж. электродами (рис. И) электрич. поля напряжённостью Е Вг/с (о — скорость потока  [c.600]

Лит. Д обре цо в Л, Н., Термоэлектронные преобразователи тепловой энергии в электрическую, ЖТФ , I960, т. 30, с.. 365  [c.103]


Пироэлектрические преобразователи энергии. Если пнроэлек-рические приемники разного рода можно обоснованно считать классическим примеродм использования особых свойств пироэлектрических материалов, то возможность их применения в качестве основных элементов в преобразователях энергии нового типа выяснилось лишь в последнее время, когда были предложены новые инженерные решения этой проблемы. В [22] показано, что использование принципа многоступенчатых устройств с оптимизацией условий энергообмена между последовательными каскадами цепи позволяет рассчитывать на создание пироэлектрических преобразователей тепловой энергии в электрическую, конкурентоспособных с другими типами подобных устройств. Сравнение различных типов преобразователей энергии согласно [22] дано в табл. 6.3.  [c.174]

В последние годы большое внимание уделяется уточнению возможностей использования сегнето-пироэлектрических материалов в качестве основных элементов в преобразователях энергии нового типа. Применение принципа многоступенчатых устройств с оптимизацией условий энергообмена между последовательными каскадами цепи позволяет рассчитывать на создание пироэлектрических преобразователей тепловой энергии низкого потенциала в электрическую, конкурентоспособных с другими типами подобных устройств. Расчеты показывают, что при оптимальном подборе температуры ФП сегнетоэлементов отдельных каскадов можно получить термический КПД порядка 15—20% при ожидаемом энергосъеме до 3 кВт/л энергоносителя [22]. Непременным условием является работа вблизи ФП. Имеются основания полагать данное направление весьма перспективным в энергетике и криогенной 9 259  [c.259]

Реальное устройство, использующее пирокристаллы, легче всего мыслить как нагреваемое от внешнего источника (например, солнца) и охлаждаемое за счет излучения во внешнее пространство за время пребывания в тени (вращающийся преобразователь). Эффективность такого преобразователя, вообще говоря, зависит от многих причин температуропроводности элемента, его теплоемкости, пи-рокоэффициепта, области рабочих температур, скорости вращения преобразователя и пр. Оценочные расчеты показывают, однако, что несмотря на низкий кпд, применение пироэлектриков в качестве преобразователей тепловой энергии в электрическую в некоторых случаях не лишено смысла. По удельной мощности (мощности, снимаемой с единицы веса материала) пироэлектрики близки к полупроводниковым преобразователям.  [c.109]

Под каскадным генератором в данном случае понимается генератор, в котором неиспользованная в термоэмисснонных преобразователях тепловая энергия поступает на вход термоэлектрических преобразователей, чем достигается более высокий к. п. д. использования топлива.  [c.116]

Из Т. н. т. вытекает важное принципиальное следствие абс. нуля темп-ры нельзя достичь ни в каком конечном процессе к нему можно лишь асимптотически приближаться. Правильность этого утверждения можно усмотреть из рис. 1 к ст. Адиабатическое размагничивание все кривые Н = onst, согласно Т. н. т., должны оканчиваться в точке Г = О, так что при последовательных циклах адиабатич. размагничивания образец должен отдавать все меньшее и меньшее количество тепла. Из недостижимости абс. нуля следует, в свою очередь, невозможность осуществить цикл Карно с темп-рой холодильника Г = О и, следовательно, принципиальная невозможность построить преобразователь тепловой энергии в механическую с кпд Г = 1.  [c.200]

В качестве источника энергии на борту станции-катапуль-ты планировалось использовать ядерную энергетическую установку —реактор и преобразователь тепловой энергии в электрическую. Энергия должна была аккумулироваться в накопителях на основе сверхпроводящих электромагнитов — криогенных систем с электромагнитными катушками, охлаждаемыми до условий сверхпроводимости. Ускорительная система пушки состояла из цепочки соленоидов. Катушки подключались таким образом, что секции, через которые уже прошел снаряд (или космический корабль), выталкивают его, а секции, расположенные впереди, втягивают аппарат. Для подключения катушек в такой последовательности необходима специальная сильноточная коммутационная аппаратура, создание которой — отдельная и серьезная проблема.  [c.719]

На базе радиоактивного изотопа трудно построить прямой преобразователь большой мощности. Существенно большие возможности в этом отношении дает цепная ядерная реакция, позволяющая в принципе получать сколь угодно большое количество тепловой энергии. В августе 1964 г. в Институте атомной энергии им. И. В. Курчатова запущен первый реактор прямого преобразования тепла в электричество. Этот реактор-термопре- образователь получил название Ромашка . Основой Ромашки является высокотемпературный ( макс = 1800° С) реактор, активная зона которого состоит из не боящихся высокой температуры дикарбида урана и графита (используется как конструкционный материал). Активная зона реактора, имеющая форму цилиндра, со всех сторон окружена бериллиевым отражателем. На наружной поверхности отражателя находится термоэлектрический преобразователь, состоящий из большого числа кремний-германиевых пластин, внутренние стороны которых нагреваются теплом, выделяемым реактором, а наружные охлаждаются. Электрическая мощность Ромашки — 500 вт. Реактор-термопрео бразователь примерно такой же мощности построен также в США.  [c.408]

Принцип работы термоэмиссионного преобразователя. Рассмотрим действие простейшего ТЭП [142, 150, 151, 159] (рис. 2.1). На катод, изготавливаемый обычно из тугоплавкого материала (например, молибдена), от источника тепла поступает тепловая энергия Q, достаточная для возникновения термоэмиссии электронов с поверхности этого металла. Электроны, увеличив свою кинетическую энергию, преодолевают межэлектродное пространство и попадают на поверхность металлического анода. При этом электроны отдают ему часть своей кинетической энергии и нагревают его, а с другой стороны, создают избыток отрицательных зарядов па поверхности этого металла, увеличивая его отрицательный потенциал. Избыток зарядов стекает по внешней электрической цепи, проходя по сопротивлению нагрузки в виде полезного тока, и вновь попадает на катод. Если в этой модели обеспечить непрерывное подведение тепла Q, достаточное для термоэмиссии — испарения электронов, то во внешней цепи по сопротивлению нагрузки будет протекать непрерывный электрический ток.  [c.18]

К. р. п. основана работа важнейших элементов полупроводниковой электрояики р — и-переходов и контактов металл—полупроводник. Учёт К. р. и. важен при конструировании электровакуумных приборов. В электронных лампах К. р. п. влияет па вид вольт-аи-перных характеристик. При прямом преобразовании тепловой энергии в электрическую в термоэжиссионном преобразователе создаётся напряжение как раз порядка К. р. п. (см. также Полупроводники).  [c.445]

Разнообразное использование Н. п. определяется простотой её создания. Газоразрядная плазма применяется в газовых лазерах и источниках связи, в плаа-мохим. процессах и процессах очистки газов, для обработки поверхностей, в разл. технол. и металлургич. процессах. Н. и. как рабочее тело используется при преобразовании тепловой энергии в электрическую, в магнитогидродинамических генераторах и термоамие-сионном преобразователе. В плазмотроне Н, и. выполняет роль теплоносителя. Вводимая в плазму электрич. энергия передаётся электронам, а от них — атомам или (и) молекулам газа и нагревает его. Уд. энергия, вводимая в такой газ, заметно выше энергии в пламени газовой горелки.  [c.354]


В настоящее время жидкие металлы широко используются в качестве теплоносителей в атомных реакторах и рабочих тел в МГД-преобразователях. Исключительные перспективы практического применения имеют жидкие полупроводники, открытые А. Р. Регелем. Их возможности определяются большим температурным диапазоном устойчивости и отличным сочетанием термоэлектрических характеристик, что делает их практически незаменимыми при решении проблемы прямого преобразования тепловой энергии в электрическую с использованием таких источников, как атомная и солнечная энергия. В этой связи мы считаем полезным издание обобщающих работ по структуре и свойствам жидких металлов и сплавов, содержащих как обзор экспериментальных результатов, так и полезные теоретические обобщения и выводы. С этой точки зрения несомненно целесообразен перевод в качестве отдельной книги обзора известного металлофизика Вилсона (Metallurgi al Rev., 1965, № 40, p. 381—590).  [c.8]

Процессы, происходящие в ограниченной рабочей зоне — эрозионном проме.жу1ке, имеют общий источник энергии — электрический разряд, являющийся вь Сококонцентрированным преобразователем электрической энергии в тепловую с объемной плотностью до 3 10 Дж/см и мопщостью до 400...600 кВт/мм .  [c.208]


Смотреть страницы где упоминается термин Преобразователи тепловой энергии : [c.178]    [c.30]    [c.84]    [c.3]    [c.104]    [c.37]    [c.310]    [c.152]   
Смотреть главы в:

Прогнозное ориентирование развития энергоустановок  -> Преобразователи тепловой энергии



ПОИСК



Общее выражение для термического КПД обратимых тепловых двигателей и прямых преобразователей энергии

Преобразователи энергии

Энергетическая экономичность тепловых преобразователей энергии



© 2025 Mash-xxl.info Реклама на сайте