Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия точечных дефектов

Энергия точечных дефектов  [c.91]

ЭНЕРгаЯ ТОЧЕЧНЫХ ДЕФЕКТОВ  [c.93]

В табл. 10 приведены значения энергий точечных дефектов для меди, серебра и золота.  [c.52]

Таблица 10. Энергия точечных дефектов для различных металлов Таблица 10. Энергия точечных дефектов для различных металлов

Образование точечных дефектов вызвано тем, что атомы, совершающие колебания в узлах кристаллической решетки, вследствие флуктуаций энергии или внешнего энергетического воздействия получают дополнительный запас энергии и переходят в состояние с большей потенциальной энергией.  [c.468]

Дислокации представляют собой дефекты кристаллического строения, вызывающие нарушения правильного расположения атомов на расстояниях, значительно больших, чем постоянная решетки. Они возникают случайно при росте кристалла и термодинамически неравновесны. Причинами образования дислокаций могут быть также конденсация вакансий, скопление примесей, действие высоких напряжений. Процесс преобразования скоплений точечных дефектов в линейные идет с уменьшением свободной энергии кристалла.  [c.470]

Другими точечными дефектами являются дислоцированные атомы (дефект Френкеля), т.е. атомы собственного металла, вышедшие из узла решетки и занявшие место где-то в междоузлии. При этом на месте переместившегося атома образуется вакансия. Концентрация таких дефектов невелика, т.к. для их образования требуется существенная затрата энергии.  [c.47]

Переход части потенциальной энергии поля напряжений в структурную составляющую энергии за счет возникновения точечных дефектов и новых дислокаций.  [c.280]

Образование точечных дефектов требует значительных затрат энергии. Эта энергия находится в прямой зависимости от прочности химических связей и пропорциональна энергии связи в кристалле. Так, чтобы создать вакансию в кристалле германия или кремния, надо разорвать четыре ковалентные связи. Вычисления показывают, что энергия образования вакансии в германии равна примерно 3,2-10-- 9 Дж (2 эВ), а в кремнии 3,7-Ю- Дж (2,3 эВ). Однако несмотря на это, при относительно высоких температурах существование дефектов является энергетически выгодным. Дело в том, что введение дефектов не только увеличивает внутреннюю энергию кристалла, но и увеличивает его энтропию. Таким образом, для заданной термодинамической температуры Т свободная энергия F—E—TS минимальна при некоторой концентрации дефектов. Последняя определяется балансом энергетической и энтропийной составляющих F.  [c.88]

При обсуждении точечных дефектов мы видели, что их концентрация сильно зависит от термодинамической температуры -—ехр [—Е/ квТ) ). Одним из важнейших свойств дислокаций является то, что их количество от температуры не зависит. Это связано с тем, что энергия образования дислокаций очень велика и фактор Больцмана ехр [— /(йв ") ] при нормальных температурах не играет существенной роли. Плотность дислокаций в кристаллах зависит, в основном, от его предшествующей истории, т. е. метода выращивания, механической обработки и т. п.  [c.108]


Рассеиваться фононы могут не только на фононах, но и на точечных дефектах (например, на примесных атомах), на линейных (дислокации), на границах зерен в поликристаллах и т. д. Перечисленные несовершенства кристаллической решетки могут поглощать и энергию, и импульс фонона. Поэтому в кристаллах с большим количеством дефектов длина свободного пробега фононов I мала при любых температурах.  [c.46]

Исходным лазерным материалом являются кристаллы фторидов и хлоридов щелочных металлов, а также фториды кальция и стронция. Используются также кристаллы с примесью. Воздействие на кристаллы ионизирующих излучений (v-квантов, электронов высоких энергий, рентгеновского и коротковолнового ультрафиолетового излучений) или прокалка кристаллов в парах щелочного металла приводит к возникновению точечных дефектов кристаллической решетки, локализующих на себе электроны или дырки. Стимулированное излучение возникает на электронно-колебательных переходах в таких образованиях. Схема генерации центров окраски аналогична схемам лазеров на красителе.  [c.957]

Экспериментальное исследование кинетики и температурной зависимости физических характеристик, обусловливаемых дефектами (например, электросопротивления, постоянной решетки, теплосодержания и т. д.), и теоретический анализ полученных данных показали, что основными типами точечных дефектов являются вакансии, межузельные атомы и состоящие из них комплексы. Энергия образования вакансии, определяемая работой по переносу атома из узла решетки на поверхность кристалла, составляет величину порядка 1 эВ (для благородных металлов, например), а межузельного атома — несколько эВ (для Си — 3,4 эВ). Поэтому появление и вакансий и межузельных атомов приводит к повышению термодинамической устойчивости системы, если концентрация и энергия образования дефектов отвечают соотношению (10.17). При этом очевидно, что концентрация одиночных вакансий должна быть заметно выше концентрации межузельных атомов.  [c.232]

Найти энергию образования винтовой дислокации для ГЦК кристалла с вектором Бюргерса /2 [НО] в зависимости от отношения радиуса ядра к размеру кристалла Сравнить с энергией образования точечных дефектов и энергией дефектов упаковки.  [c.248]

Рассмотрим подробнее механизм упругого выбивания. Для того чтобы выбить атом из его положения в кристаллической решетке, ему надо передать энергию выше некоторой пороговой представляющей собой разность энергий связи в нормальном положении и в междоузлии. Экспериментально энергия Еа определяется по минимальной энергии электронного пучка, необходимой для создания точечных дефектов кристаллической решетки. Величина  [c.650]

Другой сопровождающий выбивание эффект состоит в том, что-смещающийся атом перед остановкой (когда сечение взаимодействия-с другими атомами резко возрастает) может передать свою энергию сразу большому числу атомов, В результате большое количество атомов покидает свои места в решетке. Это явление называется пиком смещения. Возникновение пика смещения с последующей его-релаксацией приводит к сильному перемешиванию атомов. В ре-зультате уничтожаются многие точечные дефекты, но возникают более сложные дефекты, например, дислокационные петли.  [c.653]

В узлах кристаллической решетки атомы колеблются с частотой 10 3 (,-1 Благодаря колебательному движению, происходящему при любой температуре, атомы взаимодействуют, обмениваясь кинетической энергией. Средняя кинетическая энергия тепловых колебаний атомов равна 3/2 кТ. При комнатной температуре 3/2 кТ 0,03 эВ, что значительно меньше энергии, необходимой для образования точечных дефектов (1—4 эВ). Однако за счет флуктуации кинетической энергии (отклонения кинетической энергии от ее среднего значения) возможно преодоление атомом окружающих потенциальных барьеров. Вероятность такого акта увеличивается с повышением температуры по экспоненциальному закону. Если при этом происходит выход атома из узла кристаллической решетки в междоузлие, то образуются вакансия и межузельный атом ( парный дефект Френкеля ).  [c.27]


Силы, действующие между дислокациями и растворенными атомами (точечными дефектами), обладают сферической симметрией. Энергия взаимодействия краевой дислокации с растворенным атомом  [c.59]

ВЗАИМОДЕЙСТВИЕ ДИСЛОКАЦИЙ С ТОЧЕЧНЫМИ ДЕФЕКТАМИ. Упругие поля напряжений вокруг дислокации и точечного дефекта взаимодействуют. Энергия взаимодействия краевой дислокации с примесным атомом [см. формулы (48)] тем больше, чем больше фактор размерного несоответствия е.  [c.90]

Энергия дислокаций составляет несколько электрон-вольт на атом, поэтому в противоположность образованию точечных дефектов термическая активация не может помочь образованию дислокаций.  [c.103]

Свободная энергия деформированного (наклепанного) металла больше, чем отожженного, за счет энергии искажений, связанной с дислокациями и точечными дефектами, введенными при деформации. Поэтому наклепанный материал находится в термодинамически неустойчивом состоянии при всех температурах и переход его в более стабильное состояние с меньшей свободной энергией не связан строго с какой-либо определенной температурой. В этом принципиальное отличие такого перехода от фазовых превращений.  [c.298]

Частичный выход найден в том, что с помощью облучения нейтронами или закалки с высоких температур в материал вводят только точечные дефекты. Анализируя затем, как изм еняются при нагреве физические свойства таких облученных либо закаленных материалов, устанавливают температурные интервалы, кинетику и энергию активации процессов ухода таких точечных дефектов, а затем переносят эти данные и на деформированные материалы.  [c.301]

Дрейф точечных дефектов (вакансий) в образующихся локальных полях неоднородных напряжений способствует локализации деформации в переходных зонах между недеформируемыми структурными элементами и активизирует квазивязкие диффузионные механизмы переориентации кристаллической решетки в процессе диссипации энергии. Так, в экспериментах при растяжении тонкой бериллиевой фольги [80] наблюдали, что продвижение трещины происходит за счет образования микропор по границам ячеек. При этом активизируется процесс притяжения дислокаций к поверхности трещины, что также является самовоспроизводящимся процессом формирования будущей поверхности у вершины трещины.  [c.130]

Важным является вопрос о возможности существования кратных точечных дефектов (комплексов), например дивакансий, три-вакансик, тетравакансий и т. д. Простой анализ показывает, что малые скопления дефектов могут быть устойчивее одиночных. Так, если один атом переносится из узла на поверхность, то энергия образования такого дефекта (приходящаяся на атом) может быть получена умножением энергии одной связи со на половину разности числа связей в начальном и конечном состояниях. Так, в ГЦК металле атом, находящийся внутри кристалла, имеет 12 соседей (связей), а на поверхности — в среднем 6. Тогда для энергии образования, приходящейся на одну вакансию, можно получить  [c.232]

В первом случае атом ве-Вакансия щества внедряется в меж-У У, доузлие и искажает кристаллическую решетку в некоторой окрестности внедренного атома. Во втором случае один из атомов вещества удален из кристаллической решетки, что тоже приводит к ее искажению. Так как атомы в кристаллических решетках не неподвижны, а постоянно совершают колебательное движение около некоторого равновесного состояния, то в этом движении они обладают некоторой энергией движения и импульсом. Распределение этих энергий и импульсов между атомами кристалла носит статистический (вероятностный) характер, поэтому на некоторые атомы приходится их достаточно большой уровень, который обеспечивает отрыв атома и образование вакансии. Это, в свою очередь, приводит к появлению в другом месте атома внедрения. В любом кристалле такого рода точечные дефекты постоянно зарождаются и исчезают в силу теплового движения (флуктуации) концентрация их определяется формулой Больцмана  [c.132]

Известно несколько основных физических процессов, обусловливающих взаимодействие между точечными дефектами и дислокациями. Так, упругое взаимодействие обусловливает миграцию атомов примеси в областях ядра дислокаций и приводит к образованию сегрегаций (облака Коттрелла). Энергия взаимодействия дислокаций с примесями внедрения о. ц. к. решетки высокая ( 0,55 эВ для углерода и азота в а-же-лезе), а в г. ц. к. решетке низкая (Я = 0,08 эВ для водорода в никеле). Вакансии в металлах с кубической решеткой не вызывают заметных объемных искажений и не создают дальнодейству-ющих полей сдвиговых напряжений. Поэтому обычно взаимодействие между дислокациями и вакансиями в этих металлах слабое (f =0,02 эВ).  [c.222]


Смотреть страницы где упоминается термин Энергия точечных дефектов : [c.124]    [c.20]    [c.105]    [c.89]    [c.134]    [c.231]    [c.234]    [c.28]    [c.29]    [c.29]    [c.49]    [c.204]    [c.255]    [c.255]    [c.597]   
Смотреть главы в:

Теория сплавов внедрения  -> Энергия точечных дефектов



ПОИСК



Дефекты точечные

Дефекты энергия

Точечных дефектов взаимодействие энергия



© 2025 Mash-xxl.info Реклама на сайте