Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы измерения энергии и работы

ЕДИНИЦЫ ИЗМЕРЕНИЯ ЭНЕРГИИ И РАБОТЫ  [c.37]

Таблица 1-4 Взаимный перевод единиц измерения энергии и работы Таблица 1-4 Взаимный перевод <a href="/info/148458">единиц измерения энергии</a> и работы

Единицы измерения энергии и работы одинаковы.  [c.94]

Есть много различных единиц для измерения энергии и работы. Но мы будем пользоваться всего двумя или тремя.  [c.5]

Часто, исходя пз этих позиций, первый закон термодинамики формулируют как закон о взаимопревращениях тепла и работы в термодинамических процессах. Как указывалось выше, значения эквивалентов будут зависеть от выбранных единиц измерения энергии и будут показывать по существу соотношение между этими единицами.  [c.59]

Механическую энергию обычно измеряют той же единицей измерения, что и работу, т. е. килограммометром (кгм).  [c.33]

Согласно закону сохранения и превращения энергии работа совершается за счет соответствующего (эквивалентного) ей количества энергии. Отсюда энергию можно измерять в тех же единицах измерения, что и работу, и говорить работа совершается за счет равного ей количества энергии.  [c.42]

Как указывалось ранее в СИ все виды энергии, в том числе работа и теплота, измеряются в джоулях. Единица мощности ватт вт) соответствует работе 1 дж в1 сек дж/сек). В табл. 5-1 даются соотношения между единицами измерения энергии.  [c.53]

Хотя теплота Q и работа L имеют одну и ту же единицу измерения, как и энергия (джоуль), они не являются видами энергии а представляют собой два способа передачи ее и, следовательно, могут проявляться только в ходе процесса передачи теплоты или работы.  [c.28]

До настоящего времени только в странах Европы и Северной Америки для измерения длины применяют 18 различных единиц, для измерения массы— 15, давления— 15, энергии и работы- 18 и т. д.  [c.3]

В заключение отметим, что энергия и работа имеют одну и ту же единицу измерения.  [c.133]

Применение ньютона вместо килограмм-силы весьма целесообразно. При этом очень просто, без каких-либо коэффициентов образуются и другие единицы, например, работы — джоуль, мощности — ватт, которые применяют не только в механике, но и для измерения энергии и мощности в теплотехнике, электротехнике и т. д.  [c.145]

За единицу количества энергии в системе СИ применяют джоуль (Дж). В системе СИ джоуль является универсальной единицей, применяемой для измерения всех видов энергии тепловой, механической, лучистой и пр. В качестве тепловой единицы 1 Дж представляет собой такое ее количество, которое появляется в результате превращения механической работы 1 Дж в теплоту. В качестве единицы механической энергии джоуль представляет собой работу, совершаемую силой, равной I ньютону при перемегцении ею тела на расстояние 1 м в направлении действия силы (1 Дж = Н-м 1 кг-м /с ).  [c.36]


Единица измерения кинетической энергии та же, что и работы (в СИ — 1 Дж). Найдем зависимость, которой связаны эти две величины.  [c.213]

Работа постоянной силы 1 на пути 1 м при совпадении направлений действия силы и перемещения точки приложения силы в системе МКС составляет н -м. Это и есть единица измерения работы, а следовательно, и всех видов энергии, в том числе и тепловой, в системе МКС (СИ) (ГОСТ 7664-61 и 8550-61). Эта единица измерения получила название джоуль. Итак  [c.37]

Следующая задача состоит в выборе критериев для надежного выявления видов энергии. Так как эта задача обсуждается, насколько известно, только в работе Р. Г. Геворкяна [37], остановимся кратко на ней. Сначала автор приходит к выводу, что механическая (кинетическая) энергия тела или системы тел является эталонной энергией в физике другие виды энергии выявляются путем сопоставления с этой энергией . Это положение разделяется многими, Для определения энергии,— пишет, например, академик В. А. Фок,— существенным является, во-первых, закон сохранения энергии и, во-вторых, способность различных видов энергии к превращению. То и другое вместе называют законом сохранения и превращения энергии. Существование этого всеобщего закона позволяет сводить измерение энергии любого вида к измерению энергии частного вида, например, механической, и выражать энергию любого вида в одних и тех же (например, механических) единицах [621.  [c.32]

В технических задачах приходится иметь дело с рядом самых разнообразных величин, с помощью которых производятся те или иные количественные оценки. Эти величины могут быть размерными или безразмерными. Величины, значения которых зависят от принятой системы измерений, будем считать размерными. Примером размерных величин могут служить длина, масса, время, сила, момент силы, скорость, работа, энергия и т. д. Безразмерные или отвлеченные величины не зависят от системы измерений и сохраняют свои численные значения в любой принятой системе размерных единиц. Ранее мы неоднократно переходили от размерных величин к безразмерным.  [c.191]

С помощью этих основных единиц измерения выражаются размерности всех остальных механических величин (силы, работы, энергии, скорости, ускорения и т. д.).  [c.192]

Последние два члена уравнения (10.2) измеряют приращение давления в рабочем колесе, причем член ul ui)/2 отражает работу центробежных сил. Энергию, соответствующую этим двум членам, называют статическим напором. Следует отметить, что напор и давление — это различные понятия как по физическому смыслу, так и по единицам измерения. Если пьезометрический столб жидкости имеет высоту //, площадь сечения /, а плотность жидкости равна р, то давление у основания пьезометрического столба, т. е. за насосом, составит  [c.204]

Подобно тому как в гл, 3 при определении работы мы рассматривали условия, которые позволили описать взаимодействие, осуществляющее только работу, так и в настоящей главе, определяя тепло, мы воспользовались различными дополнительными условиями, благодаря которым оказалось возможным описать чисто тепловое взаимодействие. Для этого пришлось исключить возможность того, что Б рассматриваемом взаимодействии совершается работа, так что чисто тепловым мы назвали взаимодействие между двумя связанными системами, каждая из которых вначале была изолирована и находилась в устойчивом состоянии до установления теплового контакта. Далее мы отметили, что на основе принципа состояния, полученного в разд. 5.7 в качестве следствия закона устойчивого равновесия, можно установить, что при переходе связанной системы из одного устойчивого состояния в другое за счет чисто теплового взаимодействия для описания нового устойчивого состояния системы достаточно задать изменение одной лишь энергии. Это позволило получить логическим путем выражение для количества тепла, поглощаемого системой в результате чисто теплового взаимодействия, приравняв его к увеличению энергии системы. Не привлекая любой из так называемых принципов сохранения энергии , можно установить, что единицей измерения тепла служит та же величина, которая раньше упоминалась как единица измерения работы и энергии.  [c.81]


Эта система единиц впервые была установлена в 1919 г. во Франции, где была принята в законоположении о единицах измерений. В 1927—1933 гг. система МТС была рекомендована советски.ми стандартами на механические единицы. Выбор тонны в качестве основной единицы. массы казался удачным, так как достигалось соответствие между единицами длины и объема, с одной стороны, и единицей массы — с другой (с точностью, достаточной для большинства технических расчетов, 1 т соответствует. массе 1 м воды). Кроме того, единица работы и энергии в этой системе (килоджоуль) и единица мощности (киловатт) совпадали с соответствующими кратными практическими электрическими единицами.  [c.30]

В международной системе единиц измерения — системе СИ (SI) — приняты 6 основных, 2 дополнительных и 85 производных единиц. Важнейшими из основных являются следующие единица длины (линейного размера) — метр (м) единица времени — секунда (с) единица массы — килограмм (кг) единица температуры — кельвин (К). Важнейшие производные единицы единица силы, в частности силы тяжести, — ньютон (И) единица давления — паскаль (Па) единица энергии., работы, теплоты—джоуль (Дж)  [c.4]

Все измерения в этом сочинении даются в единицах СОЗ и это.му вопросу посвящена вся гл. 1. В гл. 2 излагается закон сохранения энергии. В гл. 3 рассматривается механический эквивалент тепла и описываются опыты по его определению. В гл. 4 описывается система-координат р—и и дается изображение в ней состояния газа, процесса и работы. Гл. 5 посвящена изотермическому и адиабатному процессам. Изложение этого раздела носит описательный характер, и соответствующие этим процессам аналитические соотношения в нем не приводятся. В гл. 6 дается описание цикла Карно (без вывода формулы термического к. п. д.), приводятся постулаты Клаузиуса и Томсона и доказывается теорема Карно. В гл. 7, 8, 9 и 10 рассматриваются абсолютная температура, процессы плавления и испарения и теплоемкость газа. В гл. И весьма оригинальным методом вводится в курс энтропия и посредством трех теорем доказывается, что ее изменение не зависит от особенностей процесса. Этим н заканчивается изложение сведений, относящихся к энтропии.. В гл. 12 и 13 рассматривается прохождение газов через пористые перегородки и даются некоторые положения кинетической теории, вещества.  [c.67]

Здесь А — 27 ккал1кгм — термический эквивалент работы, вводимый в уравнение ввиду того, что в технической термодинамике принято д м. u измерять в килокалориях, а I— в килограмметрах. В табл. 1-6 приводятся соотношения между единицами измерения энергии и работы с точностью, достаточной для технических расчетов.  [c.29]

Уже в 1841 — 1843 гг., проводя опыты по определению теплового действия электрического тока, Джоуль установил параллельно и величину механического эквивалента теплоты , причем точнее Майера — 460кГм/ккал. Сделал он это на установке, ставшей классической вода в бочке нагревалась вращением лопастей, и затем определялось соотношение между затраченной работой и полученным теплом. Заметим, что это соотношение выражает лишь связь между различными единицами измерения энергии, а отнюдь не величину некоего эквивалента , ибо по закону сохранени5 количества взаимопревра-щающихся видов энергии должны быть равны. Тем не менее и в большинстве современных вузовских учебни-  [c.120]

Энергия — способность производить работу. Единицы энергии и работы одинаковы. При измерении энергии электрического тока в качестве единиц применяют ваттсекунду и кило-ваттчас.  [c.406]

Единицей измерения всех видов энергии (и работы), в том числе и тепловой энергии, в системе МКС установлен джоуль, а в системе МКГСС — кГ м (ГОСТ 7664-55 и ГОСТ 8550-57).  [c.42]

Единицы измерения энергии дж и кГ м мальи и пользоваться ими при вычислении больших количеств энергии неудобно, так как пришлось бы иметь дело с очень большими числами, поэтому используют другие единицы измерения энергии ватт-час (вт ч), киловатт-час (квт-ч) и силочас (л. с. ч). Это такие количества работы (энергии), которые могут быть совершены (выделены) при мощности  [c.42]

Приведем и другие единицы измерения энергии (работы). Как известно, мощность двигателя или какого-либо другого источника энергии измеряют работой, совершаемой в единицу времени. За единицу мощности при этом принимают мощность такого источника, который дает 1 кгс-м в 1 сек. Практическими единицами мощности служат лошадиная сила ( л. с.) и киловатт (кет), причем 1 л. с. = 75 кгс-м1сек, а 1 квт=1 кдж1сек= = 1000 вг=1000 дж/сек=1000 н л1/сел = 1000 0,102 кгс - м1сек = = 102 кгс-м сек.  [c.38]

В принятой в на1Стояще1М учебнике системе единиц измерения теплота и внутренняя энергия выражаются в ккал, а работа в кГ. м. Поэтому требуется пересчет величины работы в ккал, для чего применяется тепловой эмвив алент работы  [c.24]

Единицы измерения энергии (работы). Системной единицей измерения всех видов энергии (и работы) в том числе и тепловой служит джоуль (Дж). Для измерения больших количеств тепла пользуются десятичными кратными приставками и получают единицы (внесистемные) килоджоуль, мегаджоуль и гигаджоуль по соотношениям  [c.18]

Ватт и его десятичные единицы используются для образования единиц энергии, применяющихся почти исключительно для измерения электрической энергии. Эти единицы вагг-час(Вт ч),гектоватт-час (гВт ч), киловатт-час (кВт ч), мегаватт-час (МВт ч) - представляют собой работу при соответствующей мощности в течение одного часа. Связь между этими внесистемными единицами энергии и единицей СИ следующая  [c.153]


Перед тем, как перейти к рассмотрению единиц измерения внутренней энергии, тепла и работы, заметим, что в практической теплотехнике до сих пор наряду с системой СИ широко используется система МКГСС и связанные с ней внесистемные единицы. Поэтому в настоящее время нужно уметь пользоваться обеими системами и полезно вспомнить их основные особенности. Принципиальная разница между ними состоит в том, что количество вещества в системе СИ выражается его массой, единицей измерения которой является килограмм (кг), а в системе МКГСС — его весом, единицей измерения которого является килограмм-сила (кгс).  [c.10]

Для подсчета количества тепла, сообщаемого телу или отнимаемого от него, в качестве основной единицы измерения в Международной системе единиц принимают джоуль (дж), являющийся универсальной единицей измерения работы, энергии и количества теплоты кратные и дольные единицы джоуля — килоджоуль, мегаджоуль, гигаджоуль и др.  [c.27]

Единицей измерения работы, энергии и количества теплоты в Международной системе единиц является джоуль (табл. 29). Джоуль — это работа, совершаемая силой в 1 н при перемещении точки ее приложения по направлению действия силы на расстбя-ние 1 м.  [c.47]

Таким образом, при любом градиенте давления относительная толщина потери энергии на непроницаемой теплоизолированной поверхности при л — оо становится близкой к единице. Этот результат качественно подтверждается измерениями, ириведенными в работе Ниши-ваки, Хирата и Чушида [Л. 187].  [c.256]

В следуюш,их И параграфах, посвященных первому закону термодинамики, его аналитическому выражению и некоторым его при- тожеппям, рассматриваются следующие темы о некоторых свойствах движения системы масс троякое действие, производимое теплотой понятие об энергии тела о количествах, определяющих состояние тела единицы для измерения энергии тела и внешней работы первая основная теорема механической теории теплоты один простой пример вычисления энергии заметка о дифференциальных уравнениях, не могущих интегрироваться в обыкновенном значении этой операции другое аналитическое выражение первой теоремы термодинамики для случая, когда состояние тела оиределяется двумя независимыми переменными и изменение совершается оборотным образом применение формул предыдущего параграфа к газам применепие первой основной теоремы термодинамики к газам отно-ш ение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме перечисление свойств совершенного газа, выведенных из гипотезы о его строении .  [c.43]

Рис. 8.1. Зависимость выхода однозарядных (А ) и двухзарядных (А ) ионов атома стронция от энергии Q в лазерном импульсе (в относительных единицах) измерения проведены при -у 1, Р Ра ш ш ОДс в работе [8.2 Рис. 8.1. Зависимость выхода однозарядных (А ) и двухзарядных (А ) ионов атома стронция от энергии Q в лазерном импульсе (в <a href="/info/197602">относительных единицах</a>) измерения проведены при -у 1, Р Ра ш ш ОДс в работе [8.2
II. Тепло и работа — принципиально различные термодинамические величины (эффекты термодинамических процессов) единица измерения этих величин связана известным соотношением термодинамики — значением термического эквивалента работы ( 4), который является второй характеристикой системы единиц (Л). Термический эквивалент, являющийся также символом эквивалентности иревращений энергии, обычно рассматривается как постоянная величина.  [c.21]

Прототипом задач линейной механики разрушения служит задача Гриффнтса о трещине отрыва в неограниченной среде при условиях плоской деформации (рис. 6.1). Трещина длиной 21 представлена в виде плоского математического разреза. На бесконечности заданы номинальные напряжения а, нормальные к плоскости трещины. Материал подчиняется закону Гука с модулем упругости Е и коэффициентом Пуассона V. Для того, чтобы размер трещины I увеличился на 1, необходимо затратить работу, значение которой пропорционально (И. Гриффитс связывал эту работу с энергией поверхностных сил. В действительности основная часть работы затрачивается на пластическое деформирование и другие необратимые явления. Все эти факторы учитываются в виде удельной работы разрушения V, отнесенной к единице площади вновь образованной трещины. Удельная работа у имеет размерность Дж/м = Н/м. Для конструкционных материалов удобна единица измерения кДж/м = кН/м. Согласно энергетической концепции Гриффитса трещина не растет, если значение потенциальной энергии системы П, высвобождаемой при продвижении фронта трещины на Л, меньше работы разрушения, т. е. — П < усИ. При — П >  [c.159]


Смотреть страницы где упоминается термин Единицы измерения энергии и работы : [c.62]    [c.171]    [c.38]    [c.94]    [c.27]    [c.12]    [c.11]    [c.5]   
Смотреть главы в:

Теоретические основы теплотехники  -> Единицы измерения энергии и работы



ПОИСК



224 — Единицы измерени

Единица работы

Единицы измерения

Измерение работы

Измерение энергии

Работа (энергия), единицы

Работа Единицы измерения

Работа и энергия

ЭНЕРГИЯ. , Работай энергия

Энергия единица измерения

Энергия — Единицы

Энергия — Единицы измерени



© 2025 Mash-xxl.info Реклама на сайте