Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциальная энергия системы с конечным числом степеней свободы

Если для системы с одной степенью свободы существование минимума потенциальной энергии определяется только одним условием (4.1), то для системы с конечным числом степеней свободы этот минимум потенциальной энергии определяется рядом условий.  [c.16]

Теорема. Если в положении равновесия консервативной механической системы с конечным числом степеней свободы потенциальная энергия имеет строгий минимум, то это положение равновесия устойчиво.  [c.168]


Теорема. Изолированное положение равновесия консервативной механической системы с конечным числом степеней свободы, в котором потенциальная энергия имеет строгий минимум, становится асимптотически устойчивым при добавлении к системе диссипативных сил с полной диссипацией.  [c.169]

Начнем с рассмотрения системы, имеющей конечное число степеней свободы, могущей совершать малые колебания около положения устойчивого равновесия в поле потенциальных сил. В этом случае кинетическая и потенциальная энергии представляют квадратичные формы обобщенных скоростей и соответственно обобщенных координат с постоянными коэффициентами  [c.689]

КИНЕТИЧЕСКАЯ И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ МАЛЫХ СВОБОДНЫХ КОЛЕБАНИЙ КОНСЕРВАТИВНОЙ СИСТЕМЫ. Кинетическую энергию Т системы с конечным числом степеней свободы мы получим, подставив в формулу  [c.103]

Метод приведения масс. Метод приведения масс состоит в замене системы с некоторым числом степеней свободы (бесконечным или конечным) системой с одной или несколькими (но меньшим по количеству, чем заданная) степенями свободы при соблюдении равенства кинетических энергий заданной и заменяющей ее систем в момент времени, когда отклонения равны нулю, а скорости максимальны. Заметим, что потенциальная энергия деформации в этот момент времени в обеих сопоставляемых системах равна нулю. Метод отличается простотой, однако, в отличие от энергетического метода, нет возможности априорно судить о том, получаются ли искомые частоты с недостатком или с избытком. Все зависит от выбора точек приведения масс. Впервые этот метод был применен Рэлеем, который в заменяющей системе использовал одну массу и требовал, чтобы центр тяжести этой массы совершал такие же колебания (с теми же частотой и амплитудой), как и соответствующая точка заменяемой системы. Разумеется, такое совпадение не означает, что и все остальные точки заменяющей и заменяемой систем колеблются одинаково. В этом и состоит приближенность решения.  [c.241]

Аналогичным путем мы можем доказать, что если система подвергается изменению, при котором потенциальная энергия данной конфигурации уменьшается, между тем как кинетическая энергия заданного движения остается неизменной, то периоды всех свободных колебаний увеличиваются, и наоборот. Этим предложением можно иногда воспользоваться для того, чтобы проследить за эффектом связи действительно, если мы предположим, что потенциальная энергия какой-нибудь конфигурации, нарушающей условие, налагаемое связью, постепенно возрастает, то мы приблизимся к такому положению вещей, когда данное условие наблюдается с любой желаемой степенью полноты. В течение каждого шага процесса каждое свободное колебание становится (вообще) более быстрым, и часть свободных периодов (в количестве равном числу потерянных степеней свободы) становятся бесконечно малыми. Практически того же самого результата можно достигнуть без изменения потенциальной энергии, предположив, что кинетическая энергия какого-нибудь движения нарушающего условие, налагаемое связью, беспредельно возрастает. В этом случае один или несколько периодов становятся бесконечно большими, но конечные периоды оказываются в конце концов теми же самыми, к каким мы приходим, увеличивая потенциальную энергию системы, несмотря на то, что в одном случае периоды только возрастают, а в другом только убывают. Этот пример показывает, насколько необходимо делать изменения последовательными шагами в противном случае нам не удалось бы понять соответствия между двумя группами периодов. Дальнейшие иллюстрации будут даны для случая двух степеней свободы.  [c.133]


Условия устойчивости равновесия системы с конечным числом степеней свободы устанавливаются следующей теоремой Лагранжа — Дирихле равновесные положения консервативной системы, в которых ее потенциальная энергия достигает минимума, устойчивы.  [c.7]

Установленное теоремой Лагранжа— Дирихле условие устойчивости равновесия системы с конечным числом степеней свободы заключается в том, что устойчивому равновесному положению соответствует минимум потенциальной энергии.  [c.15]

Сравнительно просто решается вопрос об устойчивости равновесия для консервативных механических систем с конечным числом степеней свободы, когда справедлива теорема Лагранжа— Дирихле если в состоянии равновесия потенциальная энергия системы имеет минимум, то это состояние устойчиво.  [c.153]

Условие бП = О позволяет выделить равновесное бостояние системы. Об устойчивости этого состояния можно судить с помощью теоремы Лагранжа — Дирихле. Если равновесное состояние устойчиво, то полная потенциальная энергия системы имеет минимум (6П=0, б П О), если неустойчиво — максимум (бП = О, 62П<0) безразличному равновесию соответствует постоянная величина энергии (бП = О, б П = 0). Здесь бП, б П — первая и вторая вариации полной энергии. Эта теорема впервые была сформулирована Лагранжем, доказательство ее для системы с конечным числом степеней свободы было дано Дирихле.  [c.53]

Остановимся на других методах исследования устойчивости упругого равновесия при потенциальных внешних силах. Среди этих методов важное место принадлежит энергетическому методу. Этот метод основан на теореме Лагранжа — Дирихле, согласно которой в положении устойчивого равновесия суммарная потенциальная энергия системы принимает минимальное значение.Теорема Лагранжа — Дирихле, доказанная строго для системы с конечным числом степеней свободы, была распространена на упругие системы Дж. X. Брайаном (1888 г.), С. П. Тимошенко (1907, 1908, 1910 гг.) и другими.  [c.335]


Смотреть главы в:

Курс теории колебаний  -> Потенциальная энергия системы с конечным числом степеней свободы



ПОИСК



Потенциальная энергия системы

Система потенциальная

Система с конечным числом степеней

Система с конечным числом степеней свободы

Степени свободы системы

Степень свободы

Степень свободы (число степеней)

Число степеней свободы

Число степеней свободы системы

Число степенен свободы

Число степенной свободы

Энергия потенциальная

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте