Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача в трубах и соплах

На рис. 7-29 показаны результаты обработки по изложенной методике опытных данных по теплоотдаче для труб, сопл, пластин и головных частей ракет. Эти опыты охватывают щирокий диапазон изменения М и Дф. Несмотря на значительный разброс опытных точек, все они группируются около линии, соответствующей формуле (7-4-41).  [c.165]

На некоторой длине трубы постоянного сечения газ можно заставить двигаться со сверхзвуковой скоростью, если его предварительно разогнать в сопле Лаваля, а затем направить в трубу. В результате торможения на некотором расстоянии от входа в трубу поток вновь станет дозвуковым. Для определения локальных коэффициентов теплоотдачи на участке трубы, где газ движется со сверхзвуковой скоростью, получена следующая формула [31]  [c.247]


В технических приложениях мы чаще всего сталкиваемся с задачами теплообмена, в которых происходит не изолированное развитие теплового пограничного слоя, а совместное развитие гидродинамического и теплового пограничных слоев. В литературе имеется несколько работ, посвященных решению этой задачи. Решения проводились преимущественно интегральными методами, так как в принципе эта задача подобна задаче теплообмена при развитии турбулентного пограничного слоя на наружной поверхности тела. Однако первая задача дополнительно осложняется тем, что на развитие турбулентного пограничного слоя сильно влияют условия на входе в трубу. Если вход в трубу выполнен в виде хорошо спрофилированного сопла, формирующего профиль скорости во входном сечении, близкий к однородному, и если на входе имеется турбулизатор пограничного слоя, то развитие полей скорости и температуры в начальном участке близко к расчетному. Такие условия на входе специально создаются в лаборатории, а на практике встречаются довольно редко. Если не проводить искусственную турбулизацию пограничного слоя, на стенке будет развиваться ламинарный пограничный слой. В зависимости от числа Рейнольдса и степени турбулентности главного потока ламинарный пограничный слой может стать стабилизированным прежде, чем произойдет переход к турбулентному пограничному слою. В промышленных теплообменниках вход в трубу выполнен обычно далеко не в виде сопла. Значительно чаще вход представляет собой внезапное сужение. Во многих теплообменниках перед входом в трубки имеются колена. В любом случае на входе происходят отрыв потока и интенсивное образование вихрей, распространяющихся вниз по течению. Это значительно интенсифицирует теплоотдачу по сравнению с теплоотдачей к развивающемуся турбулентному пограничному слою, когда турбулентные вихри образуются только на стенке трубы.  [c.235]

На рис. 3-22 представлена схема измерительного участка для измерения теплоотдачи по методу энтальпии при течении газа со сверхзвуковой скоростью внутри цилиндрической трубы. Он состоит из форкамеры 1, сменного сверхзвукового охлаждаемого сопла 2, эксперимен-  [c.183]

И. ТЕПЛООТДАЧА В ТРУБАХ И СОПЛАХ  [c.291]

С учетом этого обстоятельства наименее благоприятно охлаждение сопла петлевым потоком жидкости. Целесообразнее охлаждение соплового цилиндра сквозным поперечным потоком. Возможно также охлаждение продольным потоком. Коэффициент теплоотдачи при течении жидкости вдоль трубы определяется уравнением (36)  [c.86]


Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]

Экспериментальная установка. В настоящей работе изучается местная теплоотдача при вынужденном продольном обтекании пластины воздухом. На поверхности пластины реализуется условие 7с=соп81. Исследуемая плоская пластина (рис. 4.10) устанавливается по оси аэродинамической трубы разомкнутого типа. Воздух прокачивается через установку с помощью вентилятора, который присоединяется к выходному патрубку аэродинамической трубы. Труба представляет собой расширяющийся канал прямоугольного сечения. На входе поперечное сечение равно 60x100 мм , а на выходе 100X100 мм что обеспечивает постоянство давления воздушного потока по длине. Вентилятор приводится в движение электрическим двигателем переменного тока. На входе в канал установлено сопло Витошинского, которое служит для обеспечения равномерного распределения скорости воздуха и исключает возникновение дополнительных возмущений во входном сечении канала. Расход воздуха через аэродинамическую трубу регулируется с помощью ирисовой диафрагмы, установленной на выходном  [c.157]

Исследование теплоотдачи при охлаждении воздуха в условиях сверхзвукового течения (М 3,5) при ламинарном движении в пограничном слое [Л. 5-17]. Объектом исследования является медная цилиндрическая труба 4 длиной около 30 диаметров (рис. 5-14). Сверхзвуковое течение воздуха в трубе создается с помощью сопл 2, которые выполняются из нержавеющей стали. Плавный переход на стыке сопла с опытной трубой достигается с помощью пе[)сходнон втулки (5. Вну-  [c.242]

При конструировании парогенерирующей аппаратуры очень часто возникает необходимость в расчете коэффициента теплоотдачи при поверхностном кипении. Например, тепловыделяющие элементы в некоторых видах атомных реакторов, сопла реактив-пых двигателей и поверхности нагрева ряда других теплообменных устройств охлаждаются кипящей водой, температура которой в ядре потока -ниже температуры насыщения. Часть поверхности парогенерирующих труб прямоточных паровых котлов также охлаждается водой, недогретой до температуры насыщения. На эко-  [c.260]


Р. В. Тоуартом проведены также измерения перепадов температур в экранных трубах котла ПК-38 при использовании для очистки топки глубоковыдвижных аппаратов по схеме, представленной на рис. 5.8,а. Котел работает на назаров-ском буром угле. Паропроизводительность котла 280 т/ч. Давление пара 14 МПа, поперечное сечение топки 8X10 м. Измерения проводились при следующем режиме работы обмывочного аппарата диаметр сопл — 8 мм, давление воды — 1,0—1,2 МПа, частота вращения сопловой головки — 4 об/мин, скорость поступательного движения аппарата — 1,52 м/мин. Перепад температуры на наружной поверхности труб на расстоянии 1,5 м от оси поступательного движения аппарата составляет 206 К при времени контакта 0,03—0,04 с. Рассматриваемый участок экранных труб контактирует с компактной частью струи. Рассчитанный на основе этих данных средний коэффициент теплоотдачи составляет 31 кВт/(м2-К).  [c.211]

На рис. 3-21 показана схема измерительного участка для псследования теплоотдачи воздуха в условиях сверхзвукового течения (М < 3,5) при ламинарном движении в пограничном слое. Объектом исследования является медная цилиндрическая труба 4 длиной 30 диаметров. Сверхзвуковое течение воздуха в трубе создается с помощью сопел 2, которые выполняются из нержавеющей стали. Плавный переход на стыке сопла с опыг-ной трубой достигается с помощью переходной втулки 3. Внутренняя поверхность трубы тщательно обрабатывается и калибруется. Определение внутреннего диаметра трубы производится с помощью набора специальных калибров с точностью до 0,01 мм, а также весовым способом. Другой конец трубы также с помощью переходной втулки 5 соединяется с диффузором 6. На концах опытной трубы применяются фланцы, имеющие водяное охлаждение, которое позволяет регулировать температуру так, чтобы аксиальные утечки тепла в опытной трубе имели минимальную величину. Опытная труба делится  [c.180]


Смотреть страницы где упоминается термин Теплоотдача в трубах и соплах : [c.246]    [c.279]    [c.305]    [c.139]    [c.210]    [c.3]   
Смотреть главы в:

Теплопередача  -> Теплоотдача в трубах и соплах

Техническая термодинамика. Теплопередача  -> Теплоотдача в трубах и соплах

Теплопередача  -> Теплоотдача в трубах и соплах



ПОИСК



Сопло

Теплоотдача

Теплоотдача в соплах



© 2025 Mash-xxl.info Реклама на сайте