Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие под напряжением

Почти все конструкционные металлы (например, углеродистые и низколегированные стали, латунь, нержавеющие стали, дюраль, магниевые, титановые и никелевые сплавы и многие другие) подвержены в определенных условиях КРН. К счастью, число химических сред, вызывающих подобные разрушения, ограничено, а требуемый для растрескивания уровень напряжений достаточно высок и нечасто достигается на практике. Накопив знания об условиях возникновения опасности коррозионного растрескивания (воздействие специфических сред, уровень допустимых напряжений), в дальнейшем при проектировании конструкций удастся исключить возможность коррозионного растрескивания под напряжением. К сожалению, не все металлические конструкции, испытывающие большие напряжения, проектируются сейчас о учетом возможности растрескивания.  [c.29]


Мартенситные нержавеющие и дисперсионно-твердеющие стали, термообработанные с целью получения предела текучести- олее 1,24 МПа, самопроизвольно растрескиваются в атмосфере, солевом тумане или при погружении в водные среды, даже если они не находятся в контакте с другими металлами [55—58]. Лопасти воздушного компрессора из мартенситной нержавеющей стали [59 ] разрушались вдоль передней кромки, где были велики остаточные напряжения и конденсировалась влага. Для сверхпрочных мартенситных нержавеющих сталей с 12 % Сг, которые находились в морской атмосфере под напряжением, составляющим 75 % от предела текучести, срок службы не превышал 10 дней [60]. Приведенные данные получили разнообразные объяснения, однако они убедительно доказывают, что сталь в указанных случаях разрушается в результате или водородного растрескивания, или КРН. При наличии в стали высоких напряжений, она может растрескиваться в воде без внедрения водорода, который образуется при взаимодействии воды с металлом. По-видимому, в этом случае вода непосредственно адсорбируется на поверхности и уменьшает прочность металлических связей в степени, достаточной для зарождения трещин (адсорбционное растрескивание под напряжением).  [c.320]

В аустенитных нержавеющих сталях, стойких к превращениям при холодной обработке (например, марки 310), азот более всего способствует коррозионному растрескиванию под напряжением  [c.320]

Критический потенциал коррозионного растрескивания под напряжением холоднокатаной нержавеющей стали 18-8 в деаэрируемом растворе Mg lj при 130 °С составляет —0,145 В.  [c.391]

Коррозионная среда, способствующая коррозионному растрескиванию под напряжением, в какой-то м е специфична для данного металла, например аммиак для медных сплавов, хлоридные растворы для аустенитной нержавеющей стали и растворы нитратов для углеродистой стали. Однако, как было показано, в неблагоприятных условиях коррозионное растрескивание под напряжением вызывается и большим числом других веществ. Часто решающим являются присутствие кислорода, значение pH и электродный потенциал.  [c.34]

Нержавеющая сталь представляет собой сплав на железной основе, в котором главным легирующим компонентом является хром в количестве не менее 12 %. Благодаря содержанию хрома нержавеющей стали легко пассивируются и потому имеют хорошую коррозионную стойкость во многих часто встречающихся средах. Однако в неблагоприятных условиях даже нержавеющие стали могут подвергаться, например равномерной, щелевой, межкристаллитной коррозии, питтингу или коррозионному растрескиванию под напряжением.  [c.109]


Коррозионное растрескивание под напряжением может вести к особенно быстрым и серьезным разрушениям. Чтобы механические напряжения могли вызвать коррозионное растрескивание, они должны превысить критический уровень, который зависит от нескольких факторов, таких как состав нержавеющей стали, поверхностная шероховатость, размер зерна, структура, а также состав среды и температура. Растягивающие напряжения в конструкции могут возникать, например в результате сварки и механической обработки.  [c.119]

Можно различать два тиа коррозионного растрескивания нержавеющих сталей под напряжением межкристаллитное и транскристаллитное.  [c.119]

Механизм коррозионного растрескивания под напряжением нержавеющих сталей был объектом многих исследований, но до сих пор не до конца ясен. Скорость - определяющая стадия реакции может сильно меняться в зависимости от условий. Однако во многих случаях важную роль играет, по-видимому, местное ослабление пассивирующего слоя. Таким образом опасность коррозионного растрескивания под напряжением особенно велика в том интервале потенциалов, который соответствует неустойчивости пассивного состояния на поляризационной анодной кривой (рис. 110).  [c.121]

Широко используются нержавеющие стали Fe - Сг - Ni без присадок и с присадками титана, меди, ниобия и молибдена. В зависимости от содержания хрома и никеля такие стали бывают аустенитными, аустенитно-мартенситными и аустенитно-фер-ритными. Они обладают высокими механическими свойствами и стойки к коррозии под напряжением.  [c.119]

Особенности применения нержавеющих сталей в оборудовании, использующем морскую воду и различные солевые растворы, рассмотрены в работе [236]. Описаны условия эксплуатации, приводящие к коррозионному растрескиванию под напряжением различных типов нержавеющих сталей и разобрано 19 случаев разрушений в таких узлах и конструкциях, как бойлеры, паропроводы, конденсаторы для морской воды, кипятильники для разбавленной серной кислоты, дистилляторы, опреснительные установки.  [c.200]

КОРРОЗИИ ПОД НАПРЯЖЕНИЕМ НЕРЖАВЕЮЩИХ СТАЛЕЙ СЕРИИ 300  [c.323]

ТАБЛИЦА m КОРРОЗИЯ под НАПРЯЖЕНИЕМ НЕРЖАВЕЮЩИХ СТАЛЕЙ СЕРИИ 400  [c.333]

Введение меди (канат номер 14) в состав нержавеющей стали марки 316 ухудшало ее коррозионную стойкость, в то время как добавки кремния и азота (канат номер 15) не оказывали заметного влияния. Обычная нержавеющая сталь марки 316 (канат номер 41) не корродировала в течение 751 сут экспозиции, но после 1064 сут многие внутренние проволоки оказались сломанными в результате действия щелевой коррозии. Временное сопротивление большинства канатов из нержавеющих сталей не изменялось после экспозиции в морской воде на глубине. Канаты с номерами 41 и 42 не были подверженны коррозии под напряжением в условиях нагрузки, составлявшей 20 % от их временного сопротивления.  [c.428]

I — коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.  [c.333]

Коррозионное растрескивание под напряжением в среде, содержащей хлориды и кислород. Лучше известны и широко распространены случаи растрескивания нержавеющих сталей при экспонировании их в растворах, содержащих кислород и хлориды, при напряжениях, превышающих некоторое пороговое напряжение, но устойчивых при напряжениях, соответствующих пределу текучести. Литература по этому вопросу содержится в обзоре [43].  [c.255]

КОРРОЗИЯ НЕРЖАВЕЮЩИХ СТАЛЕЙ ПОД НАПРЯЖЕНИЕМ  [c.63]

Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала ииттингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г.  [c.13]


На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]

Коррозионное растрескивание под напряжением нержавеющей стали типа 304, которое наблюдается при комнатной температуре в растворе 5/л H2SO4 + + 0,5/п НС1, предотвращается анодной поляризацией стали до потенциала 0,7 В 132а], См. также [64] к гл. 18 и сноску на с. 322. — Примеч. авт.  [c.229]

Рис. 18.6. Коррозионное растрескивание под напряжением нержавеющей стали 18-8 (марка 304) в слое изоляции из силиката кальция, содержащего 0,02—0,5 % хлоридов, при 100 °С (Х250). Трещина в этой среде начинается в питтинге. Видимость извилистого хода трещины создается из-за того, что в одной плоскости оказалось множество несвязанных между собой трещин [47] Рис. 18.6. <a href="/info/1553">Коррозионное растрескивание</a> под <a href="/info/163835">напряжением нержавеющей стали</a> 18-8 (марка 304) в слое изоляции из <a href="/info/342045">силиката кальция</a>, содержащего 0,02—0,5 % хлоридов, при 100 °С (Х250). Трещина в этой среде начинается в питтинге. Видимость извилистого хода трещины создается из-за того, что в одной плоскости оказалось множество несвязанных между собой трещин [47]
Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную SO . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (HjS или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде Na S либо продуктов катодного восстановления сульфитов SOg" или тиосульфатов SjO вызывает водородное растрескивание высокопрочных сталей с 0,77 % С, а та кже ферритных и мартенситных нержавеющих сталей 167]. Предполагают, что и политионовые кислоты оказывают аналогичное действие.  [c.323]

Недостаток аустенитных нержавеющих сталей — их склонность к коррозии под напряжением в морской воде. Однако стойкость их несколько повышается при увеличении содержания никеля. Например, сплав Инколой состава  [c.21]

Ионы тяжелых металлов, особенно свинца, уменьшают не только общую коррозию, но и локальную. Так, есть сведения, что малые добавки ионов свинца почти полностью подавляют коррозионное растрескивание нержавеющей стали под напряжением и в условиях активного растворения в серной и азотной кислотах [214]. При эффективных концентрациях ионов свинца (10— — 10- моль/л) равновесные потенциалы свинца отрицательнее стационарного потенциала нержавеющей стали и поэтому контактное выделение с образованием фазового осадка здесь исключено и на поверхности стали возникает лишь субмономолекулярный слой свинца. Природа этого процесса еще окончательно не выяснена, но реальность процесса несомненна [209 238].  [c.88]

Контрмеры против коррозионного растрескивания под напряжением имеют целью исключить либо напряжение растяжения, либо коррозионную среду, либо, если возможно, и то, и другое. Обычной мерой является отжиг для снятия внутренних напряжений, в процессе которого остаточные н яжевия в конструкции уменьшаются до безопасного уровня. При этом условии, температуру и время отжига выбирают так, чтобы остаточные напряжения снизились до удовлетворительного уровня, но не пострадала прочность материала. Для меди, например, во многих случаях подходит термообработка при 300 °С в течение 1 ч для нержавеющей стали требуется более высокая температура (около 500 С).  [c.34]

Рис. 109. Коррозионное растрескивание под напряжением сильфонного компенсатора из нержавеющей стали на районной тепломагистрали поражение было вызвано хлоридсодержащей водой, капающей с перекрытия и испаряющейся на горячей поверхности Рис. 109. <a href="/info/1553">Коррозионное растрескивание</a> под напряжением сильфонного компенсатора из <a href="/info/51125">нержавеющей стали</a> на районной тепломагистрали поражение было вызвано хлоридсодержащей водой, капающей с перекрытия и испаряющейся на горячей поверхности

Транскристаллитное коррозионное растрескивание возникает чаще всего в средах, имеющих высокое содержание хлорида, но может обнаруживаться также в присутствии концентрированных щелочных агентов. На практике коррозионное растрескивание под напряжением бывает связано с местным обогащением хлоридами на горячих поверхностях в результате испарения (рис. 109), Существенным условием транскристаллитного коррозионного растрескивания является высокая темепратура . хлоридный вариант растрескивания редко наблюдается ниже 60 С, а щелочной - ниже 100 С. Транс-кристаллитному растрескиванию могут подвергаться аустенитные нержавеющие стали но их стойкость возрастает с увеличением  [c.120]

Рае. 110. Анодная пошфизационная кривая нержавеющей стали. В заштрихованных областях потенциала (1) опасность коррозионного растрескивания под напряжением наибольшая  [c.121]

Такие металлы, как железо и цинк, процесс коррозии которых в Нейтральных средах протекает с катодным контролем, корродируют в щелях с меньшей скоростью, чем вне их. Магниевые сплавы и некоторые нержавеющие стали, корродирующее с анодным контролем, разрушаются в щелях интенсивнее, чем на открытой поверхности. Следовательно, для у1Леродистых сталей при коррозии под напряжением в нейтральных и слабокислых средах собственно щелевой эффект рост трещин ускоряет несущественно.  [c.59]

Результативным методом является оптимальная термообработка. Для мартенситных нержавеющих сталей наиболее приемлемым является отпуск их в интервале температур 570-600 °С в ряде случаев целесообразен повторный отпуск при 500 С. Из углеродистых и низколегированных сталей наибольшей стойкостью к коррозии под напряжением обладают материалы о сорбигной и перлит-ферритной структурой, наименьшей - с мартенситной. Во многих случаях поверхностная закалка сталей повышает их коррозионно-механическую стойкость.  [c.129]

Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах.  [c.57]

КОРРОЗИЯ под НАПРЯЖЕНИЕМ ХОЛОДНОКАТАНЫХ АУСТЕПИТНЫХ нержавеющих сталей в МОРСКОЙ АТМОСФЕРЕ < [37, 38]  [c.67]

При полном погружении сплав Инколой 825 может испытывать локальную коррозию в неподвижной морской воде при обрастании и в щелях. Тем не менее стойкость этого сплава к питтинговой и щелевой коррозии гораздо выше, чем у аустенитных нержавеющих сталей. Так, в одном из экспериментов скорость коррозии сплава Инколой 825 в условиях погружения составила при 3-летней экспозиции 0,46 мкм/год. С такой же скоростью протекала и коррозия этого сплава на среднем уровне прилива и в зоне брызг. При этом локальная коррозия не наблюдалась ни в условиях хорошей аэрации в зоне брызг, ни при полном погружении. В условиях погружения, правда, возможно появление отдельных питтингов, если степень аэрации морской воды недостаточна. В табл. 30 приведены результаты испытаний сплава Инколой 825 па малых глубинах. Инколой 825 стоек к коррозионному растрескиванию под напряжением в горячей морской воде, поэтому применяется в теплообменниках, использующих морскую воду.  [c.86]

Для определения склонности нержавеющей стали AISI 201 (сенсибилизированной и обычной) к коррозии под напряжением сталь была экспонирована под напряжением 154,7 и 386,7 МПа, что соответствует 30 и 75 % ее предела текучести на глубине 2065 (403 сут), 710(197) и 720(402) м. При данных условиях испытаний нержавеющая сталь AISI 201 не была подвержена коррозии под напрял ением (NAD [7]).  [c.313]

Химический состав нержавеющих сталей серии A1SI 300 приведен в табл. 115, скорости и типы коррозии — в табл. 116, коррозионное поведение под напряжением — в табл. 117 и влияние экспозиции на их механические свойства — в табл. 118, Коррозионное поведение нержавеющих сталей серии AIS1 300 было очень неустойчивым и непредсказуемым. Они подвергались щелевой, питтинговой и туннельной коррозии в разной степени — от начальных проявлений до сквозных язв и туннелей, распространяющихся вдоль поверхности образцов на расстояние 28 см. Сравнение интенсивностей упомянутых выше типов локальной коррозии с соответствующими скоростями равномерной коррозии не показало наличия между ними определенных корреляций.  [c.313]

Некоторые из нержавеющих сталей серии AISI 300 были экспонированы под напряжениями, составляющими от 30 до 80 % их пределов текучести. Они экспонировались в морской воде на глубинах 760 и Г830 м в течение различных периодов времени для определения их подверженности коррозионному растрескиванию под напряжением. Данные испытаний приведены в табл. 117.  [c.328]

Сплавы экспонировались на глубине 760 и 1830 м в течение различных периодов времени. Данные испытаний приведены в табл. 121. В условиях этих испытаний ни одна из нержавеющих сталей серии A1S1 400 не была подвержена коррозии под напряжением.  [c.335]

Химический состав дисперсионнотвердеющих нержавеющих сталей приведен в табл. 123, скорости коррозии и типы коррозии — в табл. 124, коррозионное поведение под напряжением — в табл. 125 и 126 и влияние экспозиции на их механические свойства — в табл. 127.  [c.335]

Первое направление, по существу, представляет использование комбинированного метода механического и термического упрочнения — только на другой основе, чем при известных методах FTMO и т. п. одесь упрочняемым субстратом (основой) является аустенит нержавеющей стали и процесс упрочнения складывается из механического наклепа и последующего старения. Такой метод упрочнения может дать весьма высокие значения прочности — вплоть до Ов = 300 кПмм . Высокая коррозионная стойкость исключает возможность коррозии под напряжением и вообще возникновение коррозионных поражений, как начальных очагов разрушения, обеспечивая тем самым надежность материала.  [c.200]


Смотреть страницы где упоминается термин Нержавеющие под напряжением : [c.309]    [c.317]    [c.370]    [c.73]    [c.36]    [c.110]    [c.182]    [c.193]    [c.345]    [c.228]    [c.270]   
Морская коррозия (1983) -- [ c.35 , c.313 , c.325 , c.328 , c.328 , c.333 , c.333 , c.335 , c.335 , c.345 , c.345 , c.348 , c.348 , c.351 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Влияние напряжений и отпуска на коррозионное растрескивание нержавеющих сталей

Коррозионное разрушение углеродистой и нержавеющих сталей под напряжением при контролируемом потенциале

Коррозионное растрескивание нержавеющих сталей под напряжением

Коррозионное растрескивание под напряжением и водородное растрескивание нержавеющих сталей

Коррозия нержавеющих сталей под напряжением

Коррозия под напряжением нержавеющих

Нержавеющая сталь под напряжением

Стали нержавеющие напряжением



© 2025 Mash-xxl.info Реклама на сайте