Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы на основе железа однофазные

Сплавы на основе железа однофазные 77  [c.486]

Как показано в разд. 5.6, в гомогенных однофазных сплавах пассивность обычно наступает при соотношении компонентов, характерном для каждого сплава, и зависит также от коррозионной среды. Для сплавов Ni—Сг граница устойчивости составляет 30—40 % Ni для сплавов Сг—Со, Сг—Ni и Сг—Fe—соответственно 8, 14 и 12 % Сг. Нержавеющие стали представляют собой сплавы на основе железа которые содержат не менее 12 % Сг.  [c.294]


Для металлов и сплавов с о. ц. к. решеткой во всех известных из литературы случаях (Fe, Nb, Та, Мо, W, р-латунь, однофазные сплавы на основе железа) формируется текстура волочения одного типа <110>.  [c.282]

На сечении диаграммы состояния тройной системы Fe—Сг—Ni при 1100 "С (рис 304) этим сплавам соответствуют двухфазные области a -fv (основа никель или железо-f никель) и a-fv (основа железо), где а -фаза с о. ц. к. решеткой обогащена хромом. При более высоких температурах эти сплавы являются однофазными а (о, ц. к.) в сплавах на основе железа и у (г. ц. к.) в сплавах с высоким содержанием никеля.  [c.577]

Из перечисленных элементов, дающих замкнутую 7-область, только хром и ванадий не образуют с железом промежуточных фаз, и поэтому а-область открывается наблюдается неограниченная растворимость этих элементов в железе с ОЦК решеткой (см. рис. 4.20, а). Остальные легирующие элементы, замыкающие область, образуют с железом промежуточные фазы, поэтому при определенных концентрациях легирующего элемента на диаграммах появляется линия, ограничивающая растворимость, правее которой расположены двухфазные области (см. рис. 4.20, б). Однофазные сплавы с ОЦК решеткой, устойчивой при всех температурах вплоть до солидуса, называют ферритными сталями. Таким образом, ферритом называют не только твердый раствор углерода в Fe , но и любые твердые растворы на основе Fe .  [c.112]

Для создания сплавов на железной основе, химически стойких в определенной агрессивной среде, применяют только такие легирующие элементы, которые образуют с железом твердые растворы и обладают высокой стойкостью в этой среде. Сплавы, сопротивляющиеся коррозии, обычно бывают однофазными (например, хромоникелевые и хромистые стали, большинство сплавов меди с никелем и т. д.). Если необходимо ввести в сплав новый легирующий элемент, то надо, чтобы его электрохимический потенциал, а следовательно, и коррозионные свойства были наиболее близкими к свойствам основного твердого раствора.  [c.235]

В работах [328, 330, 332, 339, 3551 было показано, что описание-кривой нагружения ОЦК-поликристаллов уравнением параболического типа (3.57) значительно расширяет возможности экспериментального изучения процесса деформационного упрочнения. Обобщением-результатов этих работ, а также ряда литературных данных [9, 289,, 290] является общая схема деформационного упрочнения поликристал-лических ОЦК-металлов и сплавов [47, 48] (рис. 3.33), которая отражает сложный многостадийный характер процесса, обусловленный поэтапной перестройкой дислокационной структуры при деформации. Считается, что перестройка структуры (от относительно однородного распределения дислокаций через сплетения и клубки к дислокационной ячеистой структуре) вызывает соответствующее изменение внутренних напряжений [2961, следовательно, и параметров процесса деформационного упрочнения. Данная схема основывается на анализе и обобщении результатов механических испытаний и структурных исследований, проведенных на десяти сплавах ОЦК-металлов [47, 481, которые различались по величине модуля упругости, энергии дефекта упаковки, наличию дисперсных упрочняющих фаз, уровню примесных элементов и размеру зерна (в пределах одного сплава). В частности, были исследованы при испытаниях на растяжение в интервале температур 0,08—0,5Гпл однофазные и дисперсноупрочненные сплавы-на основе железа (армко, сталь 45, Ре + 3,2 % 81), хрома, молибдена (МЧВП с размером зерна 100 и 40 мкм, Мо Н- 4,5 % (об.) Т1М, ЦМ-10-и ванадия (технически чистый ванадий), а также сплавы ванадия и ниобия с нитридами соответственно титана и циркония [95].  [c.153]


В бинарных сплавах N1—Ре наблюдается уменьшение склонности к индуцированным водородом потерям пластичности по мере возрастания содержания железа [108, 109], особенно в интервале 20—50% Ре. Этот эффект интересен в сравнении с поведением сплавов, содержащих 20—30% Ре в дополнение к 20% Сг. Подобные тройные сплавы N1—Сг—Ре, к числу которых относятся, например, Ни-о-нель, Инколой 800 и Инколой 804, подвержен-ны КР в некоторых средах [241, 262, 265—268], причем при определенных обстоятельствах их стойкость к КР оказывается ниже, чем у сплавов на основе системы №—20 Сг [241]. Более того, последовательное замещение РенаИ при переходе от Инколой 800 (33% N1) к Инколой 825 (42% N1) и Инконель 625 (61% N1) сопровождается возрастанием стойкости сплава к КР [66, 67, 241, 267, 269]. Разрушения вследствие КР могут, однако, происходить во всех перечисленных сплавах, а на сплавы Монель 625 и Хастел-лой X, как было показано, отрицательно влияет также и водород при высоком давлении [39, 84, 122, 270]. В отсутствие систематических исследований поведения железа, можно предположить, что оно оказывает отрицательное воздействие на тройные и более сложные системы, обусловленное, в частности, еще не изученными синергитическими эффектами, которые подавляют поведение, свойственное Ре в бинарных сплавах. Следует, однако, также учитывать, что сплавы 800, 804, 825 (и даже 625) могли быть состарены с образованием упрочняющей у -фазы (см. ниже). Такая возможность вытекает из представленных в табл. 7 составов сплавов. В некоторых из упомянутых выше работ нет данных о термической предыстории исследованных материалов и поэтому микроструктура сплавов неизвестна. Следовательно, сравнение подобных сплавов с такими, в которых у -фаза не образуется (в частности. Инконель 600 и Хастеллой X), может быть неправомочным. По-видимому, в этой области нужны дальнейшие исследования при соответствующем контроле однофазной структуры.  [c.112]

В том случае, когда однофазное состояние сплава устойчиво только при высоких температурах, образующиеся в результате мартенситного превращения фазы метаста-бильны вследствие бездиффузионного характера мартенситного превращения. Они имеют решетки, отличные от решеток стабильных фаз (например, и в сплавах u-Al, и " в сплавах u-Sn, , ", а в сплавах u-Zn). Если сплав и при низкой температуре является однофазным (например, а-фаза легированного железа, а-фаза в сплавах на основе Ti, Zr, Со), то в этом случае, так же как и в чистых металлах, в результате мартенситного превоащения образуются кристаллы с решеткой фазы, стабильной при низких температурах. В таких случаях превращение высокотемпературной фазы в низкотемпературную может протекать в зависимости от условий охлаждения или как мартенситное превра-1иение, или как превращение с нормальной кинетикой [56]. Б последнем случае превращение изотермически идет до конца, и рост кристаллов подобен росту зерен при рекристаллизации. Возможность превращения обоих типов наиболее наглядно установлена на примере уа-превращения легированного железа.  [c.680]

Исходный однофазный сплав (Р-фаза) с решеткой объемноцентрированного куба в процессе охлаждения от высокой температуры нацело распадается с образованием высокодисперсных ферромагнитных фаз и также имеющих объемноцент-рированные кристаллические решетки. По химическому составу фазы существенно различны Pi-фаза близка к железу, р. -фаза представляет собой твердый раствор на основе химического соединения NiAl. Обе фазы имеют упорядоченную кристаллическую структуру.  [c.373]

Общее. Считают в общем, что двухфазные сплавы вследствие электрохимического взаимодействия между фазами более склонны к коррозии, чем однофазные сплавы. В жидкостях, в которых пассивность невозможна, это утверждение правильно, но в среде, благоприятствующей пассивности, присутствие второй фазы, увеличивая начальную плотность тока, может вызвать более быстрое и более полное наступление пассивного состояния. Примером этого (см. стр. 550) может служить влияние серебра в свинце при действии на него серной кислоты. Тем не менее общим является случай, когда двухфазные сплавы менее устойчивы, чем чистые металлы, тогда как однофазные сплавы большей частью имеют преимущество, по крайней мере, по сравнению с одной из составляющих. Гюртлер - отмечает, что энергия образования твердого раствора наиболее велика у тяжелых металлов с сравнительно высокой температурой плавления (железо, никель, медь и т. д.) и именно на основе этих металлов изготовляют главные коррозионностойкие сплавы. В случае, когда устойчивость вызывается образованием защитной пленки, Число фаз, присутствующих в оксиде, может оказаться столь же важным, как число фаз в металлической основе. Большое значение железохромовых и железоалюминиевых сплавов придает интерес следующему наблюдению Пассерини з, а именно,  [c.465]


Железоуглеродистые сплавы, содержащие 14—15% кремния, относятся к группе кислотостойких сплавов. Сплавы на железной основе, с содержанием кремния до 14,5% представляют собой однофазные твердые растворы и, в соответствии с правилом порогов устойчивости, высокая коррозионная стойкость железокремнистых сплавов достигается при га = 2, т. е. при содержании кремния, равном 25% атомных, или 14,5% весовых. При более высоком содержании кремния в железокремнистых сплавах появляется вторая фаза (производные кремния Ре2512, или Ре51). Кроме того, присутствующий в сплаве углерод вследствие весьма малой растворимости в железе частично образует третью фазу — графит.  [c.189]

Анодные поляризационные кривые, снятые на сплавах системы Гв-Мо-л й в растворе 4н серной кислоты сохраняют особенности, присущие основе сплавов - железу. Причем, кривые, снятые для гомогенизированных, двухфазных сплавов, в пределах ошибки эксперимента повторяют зависимости, наблюдаемые для литых образцов. Влияние упрочняющей интерметаллидной фазы Вв2 (Мо) при переходе из однофазной А двухфазную область не проявляет себя ни в виде дополнительного максимума, ни в виде активационного участка. В сплавах, богатых железом, анодный процесс контролируется растворением железа и обогащением поверхности электроположительного молибдена. Сначала растворяется железо, затем оба компонента, но скорость анодного процесса в целом определяется ионизацией молибдена. Этот механизм подтверждают данные, полученные с полощью спектрофотометрического метода анализа раствора после выдержки сплава, содержащего 20 ат. молибдена, в 4н серной кислоте при заданных потенциалах. Добавки ниобия до 5 ат. не оказывают заметного влияния на коррозионные свойства железа. Ори увеличении концентрации происходит постепенное снижение на два порядка критических токов коррозии и замедление процесса перепассивации.  [c.5]


Смотреть страницы где упоминается термин Сплавы на основе железа однофазные : [c.545]    [c.77]    [c.396]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.77 ]



ПОИСК



Железо и сплавы —

КЭП на основе железа

МТК однофазные

Однофазные сплавы

Сплавы на основе

Сплавы на основе железа



© 2025 Mash-xxl.info Реклама на сайте