Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выпучивание и устойчивость пластин и оболочек

Выпучивание и устойчивость пластин и оболочек  [c.357]

После бифуркации процесса деформирования совершенных пластин и оболочек начинается процесс их докритического выпучивания. Потеря устойчивости наступает в точке бифуркации Пуанкаре (предельной точке). Для несовершенных систем докритиче-ское выпучивание начинается с началом нагружения и потеря устойчивости наступает также в предельной точке. Нагрузку, соответствующую предельной точке на кривой зависимости нагрузка — характерное перемещение , называют пределом устойчивости или критической нагрузкой.  [c.357]


Выпучивание пластин и оболочек подробно изучено А. А. Ильюшиным [ ] на основе теории упруго-пластических деформаций и классического представления о том, что потеря устойчивости происходит при неизменных внешних силах. При этом выпучивание сопровождается появлением областей разгрузки, что существенно усложняет анализ. При использовании теории пластического течения и того же критерия большая часть трудностей сохраняется ).  [c.290]

Волновой характер распространения напряжений вдоль конструкции оказывает значительное влияние на динамическую устойчивость Б случае, если конструкция удлиненного очертания подвергается продольному удару, например удару о преграду или со стороны некоторого груза. В этой постановке условие удара задают скоростью одного из торцов стержня, пластины или оболочки при определенном соотношении. масс деформируемой конструкции и груза. Эксперименты показывают, что при увеличении скорости удара число волн, образующихся вдоль конструкции, возрастает, причем преимущественное выпучивание имеет место на участке.  [c.513]

При экспериментальном изучении устойчивости тонкостенных конструкций типа оболочек, пластин и стержней широко применяются маломасштабные образцы. По их испытаниям можно не только качественно определять наиболее слабые места конструкции и формы выпучивания отдельных элементов, но и во многих случаях с удовлетворительной точностью оценивать запасы устойчивости натурного изделия.  [c.130]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]


Несмотря на широкое применение таких конструкций, некоторые особенности их работы до настоящего времени освещены недостаточно. Прежде всего это относится к так называемому эффекту эксцентричности расположения ребер относительно срединной поверхности обшивки, которым, как правило, пренебрегаю г. Исследованию этого эффекта и посвящена первая часть книги, в которой разработан прикладной метод расчета эксцентрично подкрепленных цилиндрических оболочек и пластин на устойчивость и колебания. Рассмотрены задачи устойчивости подкрепленной цилиндрической оболочки при осевом сжатии (осесимметричное и несимметричное выпучивание), внешнем радиальном давлении и их совместном действии, а также задача о свободных осесимметричных и несимметричных колебаниях.  [c.3]

В технических приложениях часто встречается много других примеров общей и локальной потери устойчивости. Большое значение имеют задачи о выпучивании криволинейных балок, колец, арок, тонких пластин, панелей, тонких оболочек (как с внутренним давлением, так и без него), куполов, тонких труб, балок с полками различных конфигураций и при различных условиях нагружения. Подробное обсуждение этих задач выходит за рамки настоящей книги многие из них достаточно хорошо освещены в литературе (см., например, [1, 4, 5, 71).  [c.568]

Это не что иное, как классическая задача начальной устойчивости (выпучивание стоек, пластин, оболочек и т. д.).  [c.442]

С а ч е п к о в А. В. Об одном подходе к решению нелинейных задач устойчивости тонких оболочек. В сб. Нелинейная теория пластин и оболочек. Казань, Казанск. ун-т, 1962, стр. 3—11 О поверхностях выпучивания тонких оболочек при локальной потере устойчивости. Докл. АН СССР, 1962, т. 145, № 6, стр. 1243-1246.  [c.336]

Динамику выпучивания пластин и оболочек, как правило, следует рассматривать в нелинейной постановке. Исследование сводится к интегрированию уравнений типа (7.1) с инерционными членами при ненулевых начальных условиях или соответствующих уравнений с дополнительными членами, которые учитывают начальные несовершенства и т. п. В такой постановке поведение цилиндрических оболочек и панелей было впервые исследовано В. А. Агамировым и А. С. Вольмиром (1959), а такнсе Г. А. Бойченко, Б. П. Макаровым, И. И. Судаковой и Ю. Ю. Швейко (1959). Первая группа авторов рассматривала нагружение круговой цилиндрической оболочки силами, возрастающими во времени. Решая задачу Коши на электронной вычислительной машине, они установили значение нагрузки, соответствующей наибольшей скорости нарастания прогибов. Это значение авторы назвали динамической критической нагрузкой . Вторая группа авторов рассматривала внезапное нагружение упругой цилиндрической панели силами, значения которых затем уменьшаются во времени до нуля. При этом оказалось возможным сформулировать задачу устойчивости. Для некоторого класса задач на плоскости параметров была построена область, соответствующая устойчивости начальной формы панели. В последние годы изучение динамического выпучивания пластин и оболочек велось широким фронтом обзор этих работ дан в книге  [c.352]

Эйлерова точка бифуркации для упругих систем может быть устойчивой (стержни, пластины) и неустойчивой (оболочки, панели) (см. рис. 15.1—15.3). Послебифуркацнонное поведение упругопластической системы в процессе ее нагружения из устойчивых точек бифуркации может обнаружить резервы послебифуркационной устойчивости и прочности при выпучивании. В силу этого различают докритический и послекритический процессы выпучивания. Критическое состояние имеет место в предельных точках точках бифуркации Пуанкаре), в которых имеет место условие dp/d/=0 или  [c.322]

В дальнейшем исследование в рамках линейной (при малых прогибах) теории условий, при которых конструкция или элеменг конструкции с идеальными формой и упругостью могут находиться в состоянии нейтрального равновесия при нагрузках, заставляющих их выпучиваться, будем называть классической задачей устойчивости. До сравнительно недавнего времени теоретические исследования задач устойчивости были ограничены такими идеализированными решениями. Инженеры, которым при-ходилгось использовать такие элементы в проектируемых ими машинах и конструкциях, давно уже обнаружили, что зти решения иногда имеют малую, связь с действительным поведением конструкций. Такие исследования в рамках классической устойчивости дают удовлетворительные результаты для очень тонких сжатых стержней, но из-за ограничений на упругое поведение реальных материалов наибольшее применение находят результаты,, полученные эмпирическим путем. Когда классические теории устойчивости стали применяться для более сложных элементов было найдёно, что нелинейное поведение — только один из случаев серьезного расхождения 1й(ежду теориями и экспериментами. Например, классическая теория устойчивости предсказывает во много раз большую, чем действительная, способность к сопротивлению очень тонких цилиндрических оболочек при осевоМ сжатии с другой стороны, классическая теория предсказывает только часть действительной предельной прочности тонких шарнирно опертых или защемленных по краям пластин при сжатии-или сдвиге (хотя эта теория предсказывает, когда начнется выпучивание). Эти расхождения становятся тем большими, чеш  [c.81]



Смотреть страницы где упоминается термин Выпучивание и устойчивость пластин и оболочек : [c.361]    [c.469]    [c.168]    [c.281]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Выпучивание и устойчивость пластин и оболочек



ПОИСК



Выпучивание

Выпучивание оболочки

Выпучивание пластины

Выпучивание, см, Устойчивость

Оболочка Устойчивость

Пластина Устойчивость

Пластины и оболочки



© 2025 Mash-xxl.info Реклама на сайте