Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкие течения и вихревые образования

Вязкие течения и вихревые образования  [c.179]

Глава 4. Вязкие течения и вихревые образования  [c.184]

Рассмотренные теоремы определяют основные свойства вихревых движений идеальной жидкости. В вязкой жидкости эти движения являются преобладающими, и здесь мы сталкиваемся как с непрерывным распределением завихренности, так и с дискретными вихревыми трубками и вихревыми образованиями. Закономерности вихревого движения, установленные на основе модели идеальной жидкости, позволяют объяснить и многие особенности течения вязкой жидкости. Часто для этого достаточно использовать результаты решення задачи о движении жидкости в круговом вихревом цилиндре и в его окрестности.  [c.97]


В этом подразделе рассматриваются осесимметричные закрученные вокруг оси течения идеальной и вязкой жидкостей [28]. Среди них найдены аналитические представления вихревых колец с различными поперечными сечениями [10, 29], монолитных вихревых образований типа разрушения вихря [29, 30], пары вихревых колец [29] и др.  [c.203]

Произведенный расчет экранированного местного отсоса методом наложения потоков имеет существенный недостаток не учитывается образование вихревых зон. При взаимодействии двух параллельных струй, истекающих в неограниченное пространство, согласно экспериментальным исследованиям, возникает зона обратных токов газа, которая в рамках модели потенциального течения не образуется (см. рис. 1.47). Образующаяся вихревая зона также способствует повышению эффективности вытяжного патрубка при определенном расположении приточных отверстий. Определение поля скоростей в указанной вихревой области изложено в рамках модели вязкого несжимаемого газа в главе 3 и на основе метода дискретных вихрей (п.4.5).  [c.501]

Численным методом изучается течение вязкой несжимаемой жидкости между соосными цилиндрами, которые совершают равноускоренное вращение вокруг своей оси как твердое тело. Аналитическим методом строится одномерное нестационарное решение уравнений Навье - Стокса для случая, когда движение начинается из состояния покоя. На начальном участке времени одномерное нестационарное движение жидкости является неустойчивым. Вносимые в поток малые возмущения вызывают образование вторичных вихревых течений с компонентой скорости вдоль оси. Численным методом исследуется динамика возникающих неустойчивостей и их диссипация. Формулируется условие, определяющее размеры нестационарной области вторичных течений. Неустойчивый режим течения является переходным и с некоторого момента времени течение становится устойчивым.  [c.52]

Обратимся к решению (3.59) при Ь = 0. Среди прочих течений вязкой или идеальной жидкости оно позволяет воспроизвести один из типов разрушения вихря. Это явление описано Верле [18] и послужило предметом многочисленных исследований. Обзоры работ по изучению этого вихревого образования можно найти в [19-24]. Там же и в альбоме Ван Дайка [25] представлены фотографии явления при обтекании под углом атаки треугольного крыла с острой передней кромкой, а также в трубах с закрученным вокруг оси потоком. На фотографиях течений в статьях Лейбовича [21] и Эскудиера [23] видна структура вихревых образований. Вихревая система утолщения ( пузыря ) включает либо один сомкнувшийся на оси кольцевой вихрь [23], либо два, один из которых вложен в другой [21, 23]. В работах [19-23] проведена аналогия между вихревым образованием и отрывом потока вязкой жидкости от  [c.212]


Указанные несоответствия объясняются тем, что, как бы мала ни была роль трения вдалеке от омываемой поверхности, вблизи последней силы вязкости становятся соизмеримыми с инерционными, а на самой поверхности действуют исключительно вязкие силы, которым может противостоять только градиент давления. Тонкая зона, внутри которой скорости относительно поверхности резко падают до нуля и где все более преобладающее значение получают силы, тормозящие движение, называется динамическим пограничным слоем. Закономерности развития пограничного слоя таковы, что в условиях возрастающего вниз по течению давления он теряет способность стелиться вдоль поверхности и отрывается от нее, уступая место вихревым образованиям в кормовой области тела. Не касаясь всей картины течения в целом, мы будем рассматривать явления безотрывного обтекания пограничного слоя. Таким образом, предметом нашего расслютрения будут тела хорошо обтекаемой формы. Плохо обтекаемые тела только в некоторой своей части могут рассматриваться в теории пограничного слоя.  [c.100]

Исследование вихревого установившегося потока производится в двумерных решетках, в частности, в плоском потоке невязкой несжимаемой жидкости через вращающиеся круговые рещетки. Течение вязкой жидкости изучается в плоских установившихся потоках при больших числах Рейнольдса, когда влияние вязкости сводится к образованию на профилях пограничного слоя и турбулентных следов за решеткой.  [c.14]

След за круговым цилиндром во многих аспектах подобен следу за плоской пластиной. Когда число Рейнольдса превышает некоторое критическое значение, за цилиндром формируется пара вихрей. Эта пара растягивается в направлении потока, становится несимметричной и в конце концов разрушается и сносится вниз по патоку, распространяя завихренность попеременно на обе стороны следа. При умеренно больших числах Рейнольдса не всегда существует начальная пара вихрей, и так как поверхность разрыва, сходящая с поверхности цилиндра, неустойчива, она свертывается в отдельные вихри с образованием вихревой пелены. Таким образом, вихревое движение определенной частоты существует при любом числе Рейнольдса, и вниз по потоку распространяется двойной ряд вихрей. При ббльших числах Рейнольдса, скажем более Ке = 2500, вихри рассеиваются по мере образования, поэтому двойной ряд вихрей не может существовать. На задней стороне цилиндра вихри периодически отрываются, пока число Рейнольдса не достигнет значения Ке = 4 -10 — 5 -10 . При этих значениях числа Рейнольдса течение в следе становится турбулентным. Как и в случае плоской пластины, хвостовая пластина за цилиндром предотвращает отрыв вихрей и оказывает сильное влияние на сопротивление цилиндра, уменьшая коэффициент сопротивления от 1,1 до 0,9 [11, 12]. Пластина эффективна на расстоянии первых четырех-пяти диаметров вниз по потоку. Если два вязких слоя на каждой стороне следа не взаимодействуют друг с другом в области, гдо они имеют тенденцию к свертыванию в вихрь, то не возникает стабилизирующего механизма, закрепляющего определенвое периодическое образование вихрей. Поэтому вязкие спои разрушаются независимо друг от друга [121. Давление за пластиной или цилиндром мевьше, чем давление  [c.85]

Отрыв потока в случае обтекания капли в отличие от обтекания твердой частицы весьма затянут, а вихревая зона оказывается значительно более узкой. Если в случае твердой сферы отрыв потока и образование кормовой вихревой зоны начинается с Ке и 10 (число Ке определяется по радиусу сферы), то в случае капли безотрывное обтекание может иметь место вплоть до значений Ке и 50. В диапазоне чисел Рейнольдса 1 Ке 50 широко применяются численные методы. Результаты, полученные с их помощью, обсуждаются в [219]. Внутренняя циркуляция жидкости при таких числах Рейнольдса значительно интенсивнее, чем описываемая решением Адамара — Рыбчинского. Скорость на границе капли быстро увеличивается с ростом числа Рейнольдса даже для достаточно вязких капель. В предельном случае малой вязкости дисперсной фазы /3 0 (что соответствует случаю газового пузыря) для внешнего течения при Ке 3> 1 может быть использовано приближение идеальной жидкости.  [c.57]



Смотреть страницы где упоминается термин Вязкие течения и вихревые образования : [c.202]    [c.43]   
Смотреть главы в:

Аналитические исследования динамики газа и жидкости  -> Вязкие течения и вихревые образования



ПОИСК



Вихревые образования

Вихревые усы

Течение вихревое



© 2025 Mash-xxl.info Реклама на сайте