Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Азотирование предел выносливости

Для повышения предела выносливости в последнее время применяют азотирование этой стали (см. гл. Х1И, п. 3).  [c.383]

Сопротивление усталости можно значительно повысить, применив тот или иной метод поверхностного упрочнения азотирование, поверхностную закалку т. в. ч., дробеструйный наклеп, обкатку роликами и т. д. При этом можно получить увеличение предела выносливости до 50% и более. Чувствительность деталей к поверхностному упрочнению уменьшается с увеличением ее размеров.  [c.265]


Уменьшить влияние состояния поверхности на усталость можно соответствующими технологическими методами обработки, приводящими к Упрочнению поверхностных слоев. К числу таких методов относятся наклеп поверхностного слоя путем накатки роликом, обдувки дробью и т. п. химико-термические методы — азотирование, цементация, цианирование термические — поверхностная закалка токами высокой частоты или газовым пламенем. Указанные методы обработки приводят к увеличению прочности поверхностного слоя и созданию в нем значительных сжимающих остаточных напряжений, затрудняющих образование усталостной трещины, а потому влияющих на повышение предела выносливости.  [c.608]

Различные способы поверхностного упрочнения (наклеп, цементация, азотирование, поверхностная закалка токами высокой частоты ИТ. п.) сильно повышают значения предела выносливости. Это учитывается введением коэффициента влияния поверхностного упрочнения /С . Путем поверхностного упрочнения деталей можно в 2—3 раза повысить сопротивление усталости деталей машин.  [c.318]

Предел выносливости детали можно повысить также путем поверхностной термической обработки (поверхностной закалкой токами высокой частоты или кислородно-ацетиленовым пламенем) или термохимической обработки (цементацией или азотированием).  [c.558]

Значение предела выносливости может быть повышено упрочнением поверхностных слоев материала деталей. Это упрочнение может быть достигнуто двумя способами за счет пластической деформации поверхностных слоев (обкатка роликами, дробеструйная обработка) и за счет их термической и термохимической обработки (поверхностная закалка токами высокой частоты, азотирование). В этих случаях Кг > 1.  [c.341]

На рис. 7.20 представлена диаграмма пределов выносливости в амплитудах напряжений, отнесенных к пределу выносливости при симметричном цикле Оа/сг-1, в зависимости от среднего напряжения цикла средних напряжений цикла сопротивление усталости для металлов в упрочненном состоянии существенно возрастает (в два и более раза). Тем самым  [c.156]


Азотированием повышают твердость, износостойкость, предел выносливости и коррозионную стойкость в среде воздуха, воды, пара.  [c.128]

Влияние упрочнения поверхности. Для повышения несущей способности деталей широко используют разные способы поверхностного упрочнения цементацию, нитроцементацию, азотирование, поверхностную закалку токами высокой частоты (т. в. ч.), деформационное упрочнение (наклеп) накаткой роликами или дробеструйной обработкой. Упрочнение поверхности деталей значительно повышает предел выносливости, что и учитывается к оэффициентом влияния поверхностного упрочнения Км (табл. 0.4).  [c.15]

Химико-термическая обработка стальных деталей основана на поверхностном насыщении стальных деталей углеродом, азотом, алюминием, бором (цементирование, азотирование, алитирование, борирование). Она значительно повышает долговечность деталей, их контактную и усталостную прочность. Напряжения изгиба при хрупком разрушении и предел прочности получаются максимальными при поверхностном содержании углерода 0,8—1,0%. Наиболее высокий предел выносливости имеют детали, диффузионный слой которых состоит из мелкоигольчатого мартенсита и мелких карбидов 9—66 129  [c.129]

Азотирование. Насыщение поверхности детали азотом приводит к изменению структуры и создает в поверхностном слое остаточные напряжения сжатия. В результате изменения химического состава, высокой твердости слоя и высоких остаточных напряжений в нем резко повышаются коррозионная стойкость, износостойкость и предел выносливости азотированных стальных деталей.  [c.304]

Азотирование для повышения твердости применяют там, где к деталям предъявляются особые требования в отношении износостойкости и предела выносливости, например, в производстве дизельной аппаратуры, измерительного инструмента, гильз цилиндров, зубчатых колес, коленчатых валов, шпинделей токарных станков и др.  [c.304]

При выборе режимов обработки следует иметь в виду, что с повышением количества азота в слое увеличиваются объемные изменения и остаточные напряжения, в соответствии с чем и возрастает предел выносливости азотированных деталей. Значительное увеличение глубины азотированного слоя связано с понижением остаточных напряжений сжатия в нем и может вызвать понижение предела выносливости.  [c.304]

Рис. 96. Влияние азотирования на предел выносливости высокопрочного чугуна (диаметр образцов 50 мм) Рис. 96. <a href="/info/295901">Влияние азотирования</a> на <a href="/info/276758">предел выносливости высокопрочного</a> чугуна (диаметр образцов 50 мм)
Повысить предел выносливости деталей машин на 40—60%, а долговечность в 1—7 раз можно путем увеличения твердости и прочности рабочих поверхностей деталей и созданием в них остаточных напряжений сжатия за счет упрочнения цементацией, нитроцементацией и азотированием.  [c.344]

С повышением температуры испытания предел выносливости азотированной стали уменьшается за счет снижения прочности сердцевины, релаксации остаточных сжимающих напряжений и структурных изменений в азотированном слое (табл 31).  [c.113]

Установлено (рис. 93), что азотирование приводит к повышению предела выносливости образцов из стали 45 примерно на 40 % и резкому (почти в 5 раз) повышению условного предела коррозионной выносливости. Поверхность  [c.171]

Повышение предела выносливости на воздухе оказалось одинаковым для газового и ионного азотирования (см. рис. 93).  [c.173]

Известно большое разнообразие высокоэффективных технологических методов поверхностного упрочнения деталей машин, повышающих пределы выносливости в два-три раза и усталостную долговечность - в десятки и сотни раз. К ним относятся методы поверхностного пластического деформирования (ПГЩ), химико-термические (азотирование, цементация, цианирование), поверхностная закалка с нагрева токами высокой частоты или лучом лазера, комбинированные и др. Причинами столь высокого повышения сопротивления усталости являются остаточные сжимающие напряжения в поверхностном слое и повышение механических свойств слоя в результате обработки. Суммарный эффект упрочнения зависит от взаимного расположения эпюр остаточных и рабочих напряжений и сопротивления усталости материала по сечению детали [4, 12].  [c.140]


Фаг. 65. Диаграмма пределов выносливости при растяжении — сжатии ] — азотированный слой  [c.468]

Фиг. 68. Влияние азотирования на предел выносливости ступенчатых образцов с галтелью при изгибе 1 — глубина азотированного слоя 0,35 мм. d = 12,7 мм, сталь химического состава 0,31 )о С, 3,25 Сг, 0,S5 /o Мо, вр=100 кГ мм 2 - глубина Фиг. 68. <a href="/info/295901">Влияние азотирования</a> на <a href="/info/1473">предел выносливости</a> ступенчатых образцов с галтелью при изгибе 1 — глубина азотированного слоя 0,35 мм. d = 12,7 мм, сталь химического состава 0,31 )о С, 3,25 Сг, 0,S5 /o Мо, вр=100 кГ мм 2 - глубина
Сталь — Азотирование — Влияние на предел выносливости 466, 467  [c.557]

Термообработка - улучшение (280. .. 320 НВ). Механическая обработка выполняется после термообработки. Зубчатый венец рекомендуется подвергать упрочнению наклеп повы-шаег предел выносливости в 1,1. .. 1,15 раза, азотирование — в 1,3... 1,4 раза.  [c.171]

На рис. 198 пре.лставлены крив1.1е усталости улучнтепной и азотированной стали до и после обкатывания. Пре.чел выносливости азотированной стали на 25 выше, чем улучшенной обкатывание повышает предел выносливости в обоих случаях иа 25 — 30%.  [c.322]

В случае применения поверхностного упрочнения детали (обкатка роликами, обдувка дробью) или специальной термохимической обра ботки (азотирование или цементация зон концентрации напряжений) коэффициент Рпа (рт) меньше единицы, т. е. предел выносливости выше, чем для полированного образца.  [c.304]

Влияние химической обработки на прочностные свойства зависит от марки стали. Так, химико-термическая обработка деталей из стали 18Х2Н4ВА (азотирование, нитродементация и цементация) существенно не изменяет предела выносливости при симметричном цикле растяжения—сжатия и пульсирующем растяжении.  [c.131]

Если же нагрев достигает 300—350° С, то появляются термические напряжения, остаточные напряжения уменьшаются. Упрочнение цементированных и азотированных сталей возможно только в узких пределах давлений, например, для азотированной стали I8X2H4BA он равен 560—700 кгс/мм . Меньшие нагрузки практически не влияют на выносливость, большие приводят к появлению треш ин в азотированном слое, Треш ины могут появляться и при завышенном числе проходов, а также при чрезмерно малой иодаче. Оптимальным является 1—2 прохода при подаче 0,1—0,15 мм/об детали. Предел выносливости повышается на 15—20%. Нагрев образцов после упрочнения до 150° С приводит к существенному перераспределению остаточных напряжений в поверхностном слое. При нагреве до 200° С эпюра напряжений почти такая же, как в азотированной стали без упрочнения [108].  [c.100]

Влияние глубины азотированного слоя на предел выносливости азотированных деталей с концентраторами напряжений и без концентраторов напряжений подобно влиянию глубины цементованного слоя. Цементация, а особенно азотирование резко повышают предел выносливости стальных деталей с концентраторами напряжений, если упрочненный слой непрерывно проходит и по опасным зонам (галтели, отверстия, шпоночные пазы, места проходов отверстий и др.). Применение местного предохранения от азотирования или цементации или удаление упрочненного слоя в местах концентрации напряжений приведет к тому, что в результате химико-термической обработки упрочнения не будет.  [c.304]

Рис. 38. Влияние длительности азотирования стали при 520 С на предел выносливости гладких и надрезанных (У — глубина слоя) образцов а — 18Х2Н4ВЛ б 38ХМЮА Рис. 38. Влияние длительности <a href="/info/92774">азотирования стали</a> при 520 С на <a href="/info/1473">предел выносливости</a> гладких и надрезанных (У — <a href="/info/458267">глубина слоя</a>) образцов а — 18Х2Н4ВЛ б 38ХМЮА
Зависимость величины предела выносливости азотированных и неазотированных гладких образцов из стали марки 1X13 от температуры испытания  [c.113]

Приведенные результаты находятся в качественном соответствии с полученными ранее данными А.В.Рябченкова [20], который показал, что после азотирования при 600°С в течение 2 ч условный предел коррозионной выносливости стали 30 при /V = 10 цикл нагружения увеличивается примерно в два раза в водопроводной воде и в 0,04 %-ном растворе Na I, незначительно снижаясь с увеличением агрессивности коррозионной среды. Азотированная при 600°С в течение 0,5-5 ч сталь 45 при N = Ю цикл в растворе Na I имеет предел выносливости не намного ниже, чем в воздухе. Использование тлеющего разряда для проведения процессов химико-термической обработки, в частности азотирования, позволяет значительно сократить продолжительность насыщения и улучшить свойства получаемых диффузионных слоев [ 222]. Нами проведено исследование влияния ионного азотирования на выносливость стали в воздухе и в растворе Na I [223]. Для испытания применяли гладкие образцы диаметром 5 мм. Ионное азотирование выполняли на лабораторной установке МАДИ К-2 мощностью 1,2 кВт.  [c.172]

Для всех исследованных режимов ионного азотирования характерно повышение сопротивления усталости образцов из стали 38Х2МЮА, возрастающего с увеличением толщины диффузионного слоя. При толщине слоя 0,34 мм предел выносливости на 40 % выше, чем у неазотированной стали (см. рис. 93).  [c.172]


Азотирование низкоуглеродистой стали (0,15 % С) при 570°С в течение 1,5 ч приводит к повышению предела выносливости образцов диаметром 10 мм в воздухе с 190 до 350 МПа. Дистиллированная вода при 40°С несущественно снижает предел выносливости азотированных и неазотированных образцов, увеличивает долговечность в области высоких уровней циклических нагрузок [224]. В 3 %-ном растворе Na I при 40 С положительного влияния азотирование не оказало и при Л/ =  [c.173]

Предел выносливости и поверхностной твердости азотированных хромоникелевых Ьталеб  [c.197]

Коэффициенты равные отношению предела выносливости образца, подвергшегося поверхностной обработке и испытанного затем в коррозионной среде, к пределу выносливости образца, не подвергшегося поверхностной обработке и испытанного при отсутствии воздействия коррозии, представлены в табл. 23 для различного рода электролитических покрытий и для других способов поверхностной обработки (азотирование, металлизация алюмннием. обкатка роликом и т. д.).  [c.466]

Напряжения остаточные—Пример определения 288 Автоскрепленные цилиндры—см. Цилиндры автоскрепленные Азотирование — Влияние на предел выносливости 469, 470 Аистова тензометры 491 Алюминиевые сплавы — см. Сплавы алюминиевые Амортизаторы 352  [c.537]


Смотреть страницы где упоминается термин Азотирование предел выносливости : [c.25]    [c.238]    [c.241]    [c.243]    [c.77]    [c.185]    [c.131]    [c.303]    [c.305]    [c.112]    [c.173]    [c.182]    [c.198]    [c.274]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.469 , c.470 ]



ПОИСК



Азотирование

Азотирование — Влияние на предел выносливости

Выносливости предел

Выносливость

Предел выносливости — влияние азотирования предел выносливости —прочност

Сталь — Азотирование — Влияние предел выносливости



© 2025 Mash-xxl.info Реклама на сайте