Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача контактная нелинейная) с неизвестными границами

Контактные задачи принадлежат к классу задач с ограничениями. По своей природе они являются нелинейными, так как при их решении требуется определить заранее неизвестную границу контакта двух (или более) тел и контактные силы взаимодействия этих тел. Наиболее известны такие методы решения контактных задач, как методы множителей Лагранжа и штрафных функций. Применение метода множителей Лагранжа к решению этих задач приведено в [1, 2, 7, 50, 59, 69, 82, 91, 92, 102], а применение метода штрафных функций развито в [1, 2, 55, 57, 58, 69-71, 85-87, 91, 92, 102, 114]. У каждого из этих методов есть достоинства и недостатки. Для метода множителей Лагранжа точно выполняются кинематические условия контакта, но вводятся дополнительные уравнения для множителей Лагранжа и получается усложненная формулировка уравнений. В то же время для метода штрафных функций число уравнений при введении условий контакта не меняется, однако в численном алгоритме точно удовлетворить кинематические условия контакта не удается. Введение большого коэффициента штрафа приводит к плохой обусловленности касательной матрицы жесткости, а для малого коэффициента штрафа ухудшается выполнение кинематического условия контакта тел. Поэтому выбор величины штрафа является непростой задачей.  [c.6]


Как известно, специфика контактной задачи заключается в характерной для нее нелинейности, связанной с априорной неизвестностью площадок контакта и усилий, действующих по ним. Дополнительную трудность вносит наличие трения, так как очевидно, что для его учета необходимо рассмотреть проскальзывание, т. е. несовместное движение контактирующих поверхностей. В рамках обычных численных подходов это вызывает огромные трудности. Необходимо принимать во внимание также тот факт, что у границ зон взаимодействия градиенты контактных напряжений, как правило, больше. Поэтому применение МГЭ, который основывается на использовании ИУ, связывающего естественные граничные условия, для решения контактных задач с трением является обоснованным.  [c.83]

В статье [7] исследуется контактная задача с неизвестной областью контакта о вдавливании без трения жесткого штампа — эллиптического параболоида—в упругий конус. В отличие от упругого клина здесь отмечается проблематичность точного выделения всех особенностей ядра интегрального уравнения контактной задачи вне вершины конуса. Для приближенного решения интегрального уравнения при достаточной удаленности области контакта от вершины конуса применяется метод нелинейных граничных уравнений [22, 23]. Приводятся графики вдавливающей штамп силы при постоянной осадке штампа и осадки при постоянной силе в зависимости от удаленности штампа от вершины конуса при разных а, графики зависимости момента силы от а при отсутствии перекоса штампа. Определяются границы неизвестных областей контакта. При приближении штампа к вершине конуса острого угла раствора площадь области контакта уменьшается, а осадка при постоянной вдавливающей силе увеличивается.  [c.193]

Вариационные неравенства (4.40) и (4.43) обычно используются в математическом [115, 283] и численном исследованиях [72, 283] динамических контактных задач. Недостаток такого подхода в том, что односторонние ограничения заданы на границе, а неизвестное решение определяется во всей области. Учитывая, что задача нестационарна и нелинейна, при выполнении пластических расчетов это приводит к большим объемам вычислений. Для предотвращения этих трудностей в следующем разделе дается вывод вариационных неравенств, в которых неизвестные варьируются только по границе тела, включая трещины. ,  [c.98]


Все рассмотренные работы основаны на линейных теориях слоя. Трудности решения задач в соответствии с этими теориями возрастают пропорционально числу слоев. Это побудило нас к построению теории, в которой прямая связь числа искомых функций и числа слоев отсутствует, причем равновесие слоев можно- описать нелинейными уравнениями (119, 120, 122—126]. Контактное давление исключено из числа искомых функций с помощью связи по Винклеру с поперечным обжатием, выраженным через разность прогибов соседних слоев. Представление искомой вектор-функции слоя суммой произведений новых неизвестных, зависящих от координат точек срединной поверхности пакета, на полиномы дискретного аргумента (аппликаты поверхности отсчета слоя) позволило получить разрешающие системы дифференциальных уравнений, порядок которых не зависит от числа слоев. Термин континуальная теория в названиях работ [119, 120] неудачен, его следовало бы заменить на дискретно-континуальная теория , поскольку зависимость искомых вектор-функций от номера слоя в этой-теории описана ортоиормированной системой полиномов дискретного аргумента. Предложенный в [119] итеративный процесс одновременно уточняет границы зон контакта и уменьшает невязку нелинейных уравнений равновесия оболочек.  [c.17]

В ЭТОЙ главе рассматривается задача об обтекании затупленных тел равномерным сверхзвуковым потоком газа. В случае стационарного течения можно выделить три различные области однородный поток до отошедшей ударной волны, дозвуковое течение после ударной волны и сверхзвуковую область между телом и ударной волной. Возникаюндее течение математически описывается нелинейной системой уравнений в частных производных. В этом течении возможно появление неизвестных заранее границ, таких, как ударные волны, волны разрежения и сжатия, локальные дозвуковые зоны, контактные поверхности разрыва. Течение имеет различные физические и математические свойства. В разных областях уравнения движения меняют свои свойства. В дозвуковой области уравнения являются уравнениями эллиптического типа (Aid), а в сверхзвуковой — гиперболического (М>1). Переходная область является трансзвуковой (М 1).  [c.196]


Смотреть страницы где упоминается термин Задача контактная нелинейная) с неизвестными границами : [c.141]    [c.294]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.575 ]



ПОИСК



Контактная задача

Нелинейные задачи



© 2025 Mash-xxl.info Реклама на сайте