Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Насосы холодильных машин

Насосы холодильных машин 12 — 673 Насосы центробежные 12 — 338  [c.171]

Хромоникелевые стали используют для изготовления различных элементов установок низкотемпературного сжижения и разделения газов (кислорода, азота, углеводородных газов). Из них выполняют сосуды для хранения и транспортирования сжиженных газов с температурой кипения ниже 110 К. В сосудах с вакуумной изоляцией, изготовленных из алюминиевых сплавов, для изготовления соединительных деталей используют хромоникелевую сталь, учитывая ее плохую теплопроводность. В детандерах и насосах холодильных машин эти стали применяют для изготовления головок и цилиндра, а после азотирования и для клапанов поршневых детандеров. Корпусы вентилей и штоки запорной арматуры также часто изготовляют из хромоникелевой стали.  [c.24]


Общий уход за лубрикатором состоит в том, чтобы следить за показаниями контрольных отводов, при отсутствии капель проверить правильность регулировки. Лубрикатор работает исправно на любой марке масла с условной вязкостью до 10° при температуре, равной 20—30° С периодически примерно один раз в шесть месяцев при употреблении чистого масла лубрикатор подвергать чистке, для этого его отделяют от связывающих с приводом машины рычагов и снимают с места крепления. Затем вынимают крышку вместе с насосным механизмом и промывают резервуар керосином или другим нейтральным растворителем, продувают и промывают маслопроводы на машине, отсоединив предварительно их концы от места смазки. Многоточечные лубрикаторы (табл. 10) выпускаются машиностроительным заводом в городе Николаеве. Подобные лубрикаторы применяются для централизованной жидкой смазки компрессоров, станков, насосов, холодильных машин, эксцентриковых и фрикционных прессов, пневматических молотов и т. п.  [c.70]

В перегородке кондиционера, разделяющей оба отсека, предусмотрено отверстие 8. Более универсальными являются автономные кондиционеры, в которых холодильная машина работает по схеме теплового насоса. Такие кондиционеры обеспечивают не только охлаждение, но и нагрев воздуха в помещении в зависимости от условий производства.  [c.202]

ЦИКЛЫ холодильных МАШИН. ТЕПЛОВОЙ НАСОС  [c.178]

Цикл, совершаемый по часовой стрелке, называемый также прямым циклом, представляет собой цикл теплового двигателя в результате прямого цикла производится работа над внешним объектом работы, численно равная разности количеств теплоты, отданной источником теплоты высшей температуры и полученной источником теплоты низшей температуры. Цикл, совершаемый против часовой стрелки, т. е. обратный цикл, характерен для теплового насоса или холодильной машины в р( зультате обратного цикла за счет затраты работы внешним источником работы осуществляется перенос теплоты от низшей температуры к высшей (т. е. от источника теплоты с более низкой температурой к источнику теплоты с более высокой температурой), при этом источник теплоты низшей температуры отдает количество теплоты Q , а источник теплоты высшей температуры получает количество теплоты 1 Ql -=  [c.49]

Так как энергия в абсорбционной холодильной машине затрачивается в виде теплоты (работа, затрачиваемая на привод насоса, незначительна, то эффективность действия абсорбционной машины характеризуется чаще всего коэффициентом использования теплоты равным, согласно выражениям (20.9) и (20.8),  [c.627]


В рассмотренных принципиальных схемах термотрансформаторов в установку входили двигатель, производящий механическую работу, и тепловой насос, потребляющий эту работу. Однако можно себе представить схему термотрансформатора, в которой оба эти элемента отсутствуют. Такая схема имеет место, например, при использовании в качестве термотрансформатора абсорбционной машины. В установке с абсорбционной холодильной машиной (если пренебречь небольшой величиной работы жидкостных насосов) за один цикл затрачивается в генераторе при температуре t en теплота поглощается от охлаждаемого тела в испарителе при температуре Д теплота q и выделяется при температуре заключенной в интервале между t en и в конденсаторе и абсорбере, теплота + a- Если испаритель имеет  [c.631]

Насосом называется машина, предназначенная для создания потока жидкой среды. При работе насоса механическая энергия электродвигателя превращается в потенциальную и кинетическую энергию потока жидкости и частично в теплоту. Насосы относятся к числу самых распространенных машин, применяемых в народном хозяйстве. В холодильной технике они применяются для подачи жидкого хладагента (в приборы охлаж-  [c.303]

Водоаммиачная холодильная машина (рис. 12.3) работает по тому же циклу, что и парокомпрессионная, но в абсорбционной машине процесс сжатия заменен следующими процессами абсорбция пара водой в процессе растворения повыщение давления раствора в цикле получение пара при нагреве раствора. Таким образом, в абсорбционных мащинах нет компрессора, сжимающего пар холодильного агента, и в связи с этим нет затраты значительной работы на процесс сжатия. Повышение давления раствора в абсорбционных машинах осуществляется в насосе, затрачиваемая работа на привод которого пренебрежимо мала по сравнению с работой сжатия пара в компрессионных холодильных машинах. Вместе с тем в абсорбционных машинах расходуется теплота, подводимая к рабочему телу от внешних источников.  [c.179]

Термодинамическая эффективность циклов абсорбционных холодильных машин определяется тепловым коэффициентом, равным отнощению холодопроизводительности к сумме затраченной в генераторе теплоты и теплоты, эквивалентной работе насоса. Считаем, что в цикле 1 кг вещества, тогда  [c.180]

Тепловым насосом (рис. 12.4) называется любая холодильная машина (воздушная, паровая компрессионная, абсорбционная, термоэлектрическая и т. д.), осуществляющая передачу теплоты нагреваемой системе за счет использования источников теплоты с низкой температурой (воздух, вода естественных и искусственных водоемов, грунт).  [c.181]

Абсорбционная холодильная машина использует в качестве хладагента влажный пар аммиака. Жидкий аммиак дросселируется в редукционном вентиле 1 (рис. 12.11) и охлаждается от температуры /j 15°С до температуры = —15°С. Затем влажный пар поступает в испаритель 2, где степень сухости его возрастает до единицы за счет теплоты, отбираемой от охлаждаемого объема. Из абсорбера 3, куда подается раствор аммиака в воде при температуре ti, обогащенный раствор насосом 4 направляется в генератор аммиачного пара 5. Здесь за счет теплоты Qnr, подводимой извне, происходит испарение раствора. При этом аммиачный пар при температуре поступает в конденсатор 6 и конденсируется при /5 = 45 °С, а жидкий аммиак через редукционный вентиль 7 снова поступает в абсорбер 3.  [c.164]

Чтобы приблизить теоретический КПД цикла теплового насоса к КПД цикла Карно, можно использовать в качестве рабочего тела влажный пар какого-либо вещества. Б этом случае цикл теплового насоса совпадает с обращенным циклом паросиловой установки, работающей с влажным паром. От цикла парокомпрессионной холодильной машины он отличается только диапазоном температур.  [c.565]

Из рис. 8.49 видно, что в тех случаях, когда одновременно необходимо получать и холоди теплоту, циклы холодильной машины и теплового насоса можно совместить в один обратный цикл A—B— —D—A (1—2—3—4—1 — цикл холодильной машины, а—Ь—с—d—а — цикл теплового насоса). Такой совмещенный цикл обладает рядом технико-экономических преимуществ.  [c.566]


Машины, служащие для передачи тепла от холодного источника к горячему и работающие по аналогичному принципу, называются холодильными машинами и тепловыми насосами. Различаются они только по пределам температур у первых окружающая среда является верхним источником тепла, у вторых — нижним источником. Таким образом, у первых теплота отнимается от тел, имеющих  [c.100]

Обратный цикл есть круговой процесс холодильной машины и теплового насоса, в котором затрачивается работа извне для того, чтобы теплоту q2 передать из холодильника в теплоприемник. Процесс осуществляется в такой последовательности. При расширении рабочего тела по линии AB (рис. 1.46) к нему подводится количество теплоты q2 от холодильника со средней температурой Тг. При последующем сжатии рабочего тела по линии D А от него отводится в теплоприемник со средней температурой количество теплоты q , большее q2- Таким образом, в обратном цикле теплота цикла Qu — qi — qz < О и работа цикла /ц = /i - / < 0. Другими словами, в обратном цикле линия расширения AB в координатах р, v и линия процесса подвода теплоты аЬс в координатах Т, s лежат ниже линии D А сжатия и da отвода теплоты. Другими признаками обратного цикла являются 1) направление процессов в цикле против часовой стрелки 2) алгебраическая сумма работ и теплот цикла должна быть меньше нуля.  [c.63]

Недостатком совмещенного цикла является то, что количества теплоты qi и q холода, полученные в этом цикле, не произвольны, а находятся в определенной зависимости от температур и Т . Если, как это показано на рис. 1.84, холодильная машина и тепловой насос работают по обратному циклу Карно, то отношение  [c.108]

Наряду с изображенным на рис. 8.3 и 8.4 прямым циклом Карно, являющимся прототипом циклов тепловых двигателей, рассмотрим обратный цикл Карно —так называемый цикл теплового насоса, который, в свою очередь, служит прототипом для циклов холодильных машин.  [c.110]

В случае цикла, совершаемого против часовой стрелки, нельзя говорить о тепловом двигателе, потому что двигатель всегда производит положительную полезную работу. В этом случае имеет место цикл теплового насоса или холодильной машины.  [c.62]

Прямой цикл Карно, рассмотренный выше, называется тепловым циклом и служит прообразом рабочих циклон различных тепловых двигателей. Обратимый цикл Карно называется холодильным циклом и используется в тепловых насосах и холодильных машинах. При совершении обратного цикла Карно от источника тепла с меньшей температурой на 1 кг рабочего тела отнимается тепло qo, а источнику тепла с более высокой температурой отдается тепло qi в количестве q + l, большем qo для осуществления обратного цикла требуется затрата внешней механической работы Г, равной разности 1—< 2.  [c.327]

Так как затрата энергии в абсорбционной холодильной машине производится в виде тепла (работа, затрачиваемая на привод насоса, незначительна), то эффективность действия абсорбционной машины характеризуют чаще всего коэффициентом использования тепла равным согласно уравнению (15-8)  [c.487]

В рассмотренных принципиальных схемах термотрансформаторов в установку входили двигатель, производящий механическую работу, и холодильная машина — тепловой насос, потребляющий эту работу. Однако можно себе представить схему термотрансформатора, в которой оба эти элемента отсутствуют. Такая схема имеет место, например, при использовании в качестве термотрансформатора абсорбционной машины.  [c.493]

Действительно, в установке с абсорбционной холодильной машиной (если пренебречь небольшой величиной работы жидкостных насосов) за один цикл затрачивается в генераторе при температуре г количество тепла qr, поглощается от охлаждаемого тела в испарителе при температуре h количество тепла qo и выделяется при температуре t2, заключенной между /г и 1 1, в конденсаторе и абсорбере количество тепла  [c.493]

На рис. 16-6 видно, что в тех случаях, когда одновременно требуется и холод и тепло, циклы холодильной машины и теплового насоса можно совместить в один обратный цикл А В С D А.  [c.495]

Цикл абсорбционной холодильной машины можно представить в виде совокупности двух циклов, из которых один прямой ( 234), другой обратный (5678), холодильный. Процесс 12 прямого цикла изотермный, осуществляется в испарителе 1 при температуре и давлении Адиабатный процесс 23 — процесс расширения в турбине 6, изотермный процесс 34 является процессом отбора теплоты абсорбции пара в абсорбере и адиабатный процесс 41 - процесс подачи раствора насосом 7 из абсорбера. 5 в генератор 1.  [c.76]

Чем отличается тепловой насос от холодильной машины  [c.82]

Идею такого применения холодильной машины впервые предложил Кельвин еще в 1852 г. Сегодня агрегаты, носящие название тепловых насосов, которые используются для охлаждения летом и для отопления зимой, серийно выпускаются промышленностью. Схема такого агрегата условно показана на рис. 4.30.  [c.83]

Большие возможности существуют и у многоцилиндровых схем для тепловых насосов, холодильных машин, холодильных машин с тепловым приводом и других комбинаций. Однако разработчик должен всегда выбирать схему осторожно. Автор предпочитает придерживаться правила, сформулированного профессором Эгоном Орсвоном, который считал, что никогда не надо пытаться сделать что-то сложное до тех пор, пока изобретатель не потерпел неудачу с чем-то простым. Поэтому, если нормально работает схема с одним поршнем, будет ли кто-то стараться применить два или пять поршней  [c.213]


По обратному циклу могут работать не только холодильные машины, задачей которых является поддержание температуры охлаждаемого помещения на заданном уровне, но и так называемые тепловые насосы, при помощи которых теплота низкого Jютeнциaлa, забираемая от окружающей среды с помощью затраченной йзёнё работы, при более высокой температуре отдается внешнему потребителю.  [c.340]

В холодильной машине теплота Qj выбрасывается в окружающую среду — источник неограниченной емкости. Машины, основным продуктом производства которых является теплота Qj, передавг1емая в источник ограниченной емкости, называются тепловыми насосами. Эффективность работы тепловых насосов оценивается отопительным коэффициентом, представляющим собой отношение теплоты Qi, переданной потребителю, к затраченной работе  [c.65]

Струйные насосы отличаются простотой конструкции, малыми габаритными размерами и отсутствием движущихся частей, что делает их весьма надежными в эксплуатации. Струйные аппараты нашли широкое применение в теплогазоснабженнп, вакуумной технике, вентиляции, кондиционировании воздуха, В холодильной технике на их базе созданы зжекторные холодильные машины. Кроме того, они находят применение в качестве поджимающих устройств в одноступенчатых холодильных машинах для кратковременного (сезонного) получения низких температур.  [c.326]

Тепловой насос (рис. 9.6,а) работает следующим образом. В испарителе 1 происходит испарение низкоки-пящего теплоносителя (например, хладона) при поступлении теплоты из внешней среды (вода больших водоемов, почва, наружный воздух). Этот процесс изображается линией 8—5 на Т—5-диаграмме (рис. 9.6,6). Образовавшийся пар сжимается в компрессоре 2 по линии 5—6 с повышением температуры от То до Ть В конденсаторе 3 пар конденсируется, отдавая теплоту в систему отопления (линия 6—7). Образовавшаяся жидкость направляется в дроссельный вентиль 4, в котором происходит понижение давления до ро и температуры до То (линия 7—8), и цикл 8—5—6—7—8 повторяется. На рис. 9.6,6 изображен также цикл 1—2—5—4—1 холодильной установки, отдающей теплоту в процессе 2—3 окружающей среде при температуре То- Видно, что цикл теплового насоса лежит выше изотермы То, а цикл холодильной установки — ниже этой линии. Холодильная установка отдает теплоту в окружающую среду, тепловой насос отбирает теплоту из этой среды для того, чтобы повысить ее температурный уровень и передать в систему отопления. Анализ двух циклов показывает, что возможно создание установок для совместного получения холода и теплоты. В таких комбинированных установках тепловой насос может повышать температурный уровень теплоты, отводимой холодильной машиной большой мощности, и направлять эту теплоту в отопительные системы.  [c.235]

В тех случаях, когда одновременно требуется получить теплоту и холод, целесообразно совместить циклы холодильной машины и теплового насоса в один обратный цикл, как это показано на рис. 1.84. На этом рисун-  [c.157]

Рассмотренн1лй цикл абсорбционной холодильной машины можно разбить на два цикла прямой и обратный. Прямой цикл, т. е. цикл парового двигателя, осуществляется по следующей схеме кипятильник — турбина — абсорбер, выполняющий роль конденсатора,— насос. Обратный цикл, или цикл холодильной машины конденсатор — турбина — испаритель — прямой цикл, выполняющий роль термокомпрессора.  [c.265]

Отечественная промышленность выпускает холодильные установки в широком диапазоне температур конденсации Т и испарения Т с поршневыми или винтовыми компрессорами, а также с турбокомпрессорами, холодопроизводитель-ностью от нескольких ватт до 6500 кВт. Наряду с компрессорными машинами выпускаются теплоиспользующи(2 абсорбционные бромисто-литиевые и пароводяные эжекторные холодильные машины. Производятся холодильные установки для ожижения углекислоты и производства сухого льда, льдогенераторы, термобарокамеры, кондиционеры, тепловые насосы и другое оборудование. В нашей стране впервые были созданы оригинальные регенеративные воздушные холодильные машины с вакуумным циклом. Широкое применение получило использование холода на транспорте. Серийно выпускаются судовые, автомобильные, железнодорожные и другие транспортные холодильные установки. В большом количестве производятся бытовые холодильники и кондиционеры разнообразных типов.  [c.321]

Тепловые насосы широко используются для теплоснабжения в различных технологических процессах и для отопления. Одинаковый принцип работы холодильных машин и тепловых насосов позволяет в одном агрегате вырабатывать как холод, так и теплоту, обеспечивая одновременно тепло- и хладоснаб-жение потребителя. Обычно такое сочетание является экономически выгодным. Источником теплоты для теплового насоса, используемого для отопления, могут быть воздух, вода и грунт. Приемником теплоты является отапливаемое помещение. Если температура источника теплоты изменяется (например, суточное изменение температуры Та воздуха), то эффективность теплового насоса (Q/Ni) также изменяется (рис. 8.27).  [c.324]

В настоящее время энерготехнологические схемы наиболее широко распространены в химической промышленности и в цветной металлургии. Так, на рис. 13.3 приведена энерготехнологическая схема производства этилена и пропилена. Полученный в пиролизных печах пирогаз I с температурой 1113 — 1123 К подводится к котлу-утилизатору 1, где при его охлаждении до 673 К производится пар давлением 9—10 МПа. Пар направляется в турбину противодавления 2 для привода компрессора пирогаза и аналогичную турбину 3 для привода электрического генератора. Пар II, выходящий из турбин с давлением 0,25 — 0,3 МПа, распределяется на технологические нужды и частично поступает в генератор 4 абсорбционной холодильной машины для получения холода при при 236 К. За счет теплоты конденсации водяного пара происходит выпаривание хладагента из крепкого раствора, который из генератора подается в конденсатор 5, охлаждаемый водой, а затем через дроссельный вентиль в испаритель 6 к потребителям холода. Парообразный хладагент из испарителя всасывается компрессором 7, где он сжимается до давления абсорбции и направляется в абсорбер 8, охлаждаемый водой в нем хладагент поглощается слабым раствором, поступающим из генератора 4. Образующийся при этом крепкий раствор насосом 9 через теплообменник 10 растворов возвращается в генератор 4.  [c.393]

Наиболее часто обратные циклы рассматриваются применительно к холодильным машинам, тепловым насосам, тс )мотрансформато-рам. Назначением холодильного ни к. д а является передача теило гы о тела, имеющего температуру более низкую, чем температура самого холодного тела в окружающей среде. Такой процесс называется и с к у с с т в е н н ы м о х л а ж д е и и е м. Искусст-Бсиный холод уже с середины XIX в. широко применяется для длительного хранения пиихевых  [c.340]

Универсальная тепловая машина стирлинг . Была запатентована Р. Стирлингом в 1816 г., но оценена должным образом только в последние десятилетия. Эта машина простым переводом управляющего устройства может быть переключена на работу ДВшС, холодильной машины и теплового насоса. Ее показатели как ДВшС выше показателей всех других ДВшС, а в ряде случаев и ДВС (табл. 7.1). Поскольку стирлинг нуждается в охлаждении, его показатели повышаются в условиях применения па морских аппаратах. Теоретический цикл стирлинга — регенеративный цикл Карно. Максимальная температура цикла 600—700° С, максимальное давление 100—200 бар, i- ,k = 70%, г) = 35—45%, КПД регенератора — 95—98%.  [c.143]



Смотреть страницы где упоминается термин Насосы холодильных машин : [c.108]    [c.321]    [c.351]    [c.511]    [c.511]    [c.314]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.673 ]



ПОИСК



Холодильная машина

Цикл холодильных машин. Тепловой насос



© 2025 Mash-xxl.info Реклама на сайте